RSA算法python實現

RSA算法是一種非對稱加密算法,是如今普遍使用的公鑰加密算法,主要應用是加密信息和數字簽名。詳情請看維基:http://zh.wikipedia.org/wiki/RSA%E5%8A%A0%E5%AF%86%E6%BC%94%E7%AE%97%E6%B3%95html

算法基本思路:算法

1.公鑰與私鑰的生成:安全

(1)隨機挑選兩個大質數 p 和 q,構造N = p*q;dom

(2)計算歐拉函數φ(N) = (p-1) * (q-1);ide

(3)隨機挑選e,使得gcd(e, φ(N)) = 1,即 e 與 φ(N) 互素;函數

(4)計算d,使得 e*d ≡ 1 (mod φ(N)),即d 是e 的乘法逆元。測試

此時,公鑰爲(e, N),私鑰爲(d, N),公鑰公開,私鑰本身保管。加密

2.加密信息:spa

(1)待加密信息(明文)爲 M,M < N;(由於要作模運算,若M大於N,則後面的運算不會成立,所以當信息比N要大時,應該分塊加密)code

(2)密文C = Me mod N

(3)解密Cd mod N = (Me)d mod N = Md*e mod N ;

要理解爲何能解密?要用到歐拉定理(實際上是費馬小定理的推廣)aφ(n) ≡ 1 (mod n),再推廣:aφ(n)*k ≡ 1 (mod n),得:aφ(n)*k+1 ≡ a (mod n)

注意到 e*d ≡ 1 mod φ(N),即:e*d = 1 + k*φ(N)。

所以,Md*e mod N = M1 + k*φ(N) mod N = M

簡單來講,別人用個人公鑰加密信息發給我,而後我用私鑰解密。

3.數字簽名:

(1)密文C = Md mod N

(2)解密M = Cmod N = (Md)e mod N = Md*e mod N  = M ;(原理同上)

簡單來講,我用本身的密鑰加密簽名,別人用個人公鑰解密能夠看到這是個人簽名。注意,這個不具備隱私性,即任何人均可以解密此簽名。

 

算法的安全性:基於大整數N難以分解出p和q,構造φ(N);或由N直接構造φ(N)一樣難。

 

算法的實現:

1.快速冪取模;http://www.cnblogs.com/7hat/p/3398394.html

2.素性測試;http://www.cnblogs.com/7hat/p/3400831.html

3.擴展歐幾里得求乘法逆元和最大公約數;http://www.cnblogs.com/7hat/p/3406494.html

實現代碼:

import random

def fastExpMod(b, e, m):
    """
    e = e0*(2^0) + e1*(2^1) + e2*(2^2) + ... + en * (2^n)

    b^e = b^(e0*(2^0) + e1*(2^1) + e2*(2^2) + ... + en * (2^n))
        = b^(e0*(2^0)) * b^(e1*(2^1)) * b^(e2*(2^2)) * ... * b^(en*(2^n)) 

    b^e mod m = ((b^(e0*(2^0)) mod m) * (b^(e1*(2^1)) mod m) * (b^(e2*(2^2)) mod m) * ... * (b^(en*(2^n)) mod m) mod m
    """
    result = 1
    while e != 0:
        if (e&1) == 1:
            # ei = 1, then mul
            result = (result * b) % m
        e >>= 1
        # b, b^2, b^4, b^8, ... , b^(2^n)
        b = (b*b) % m
    return result

def primeTest(n):
    q = n - 1
    k = 0
    #Find k, q, satisfied 2^k * q = n - 1
    while q % 2 == 0:
        k += 1;
        q /= 2
    a = random.randint(2, n-2);
    #If a^q mod n= 1, n maybe is a prime number
    if fastExpMod(a, q, n) == 1:
        return "inconclusive"
    #If there exists j satisfy a ^ ((2 ^ j) * q) mod n == n-1, n maybe is a prime number
    for j in range(0, k):
        if fastExpMod(a, (2**j)*q, n) == n - 1:
            return "inconclusive"
    #a is not a prime number
    return "composite"

def findPrime(halfkeyLength):
    while True:
        #Select a random number n 
        n = random.randint(0, 1<<halfkeyLength)
        if n % 2 != 0:
            found = True
            #If n satisfy primeTest 10 times, then n should be a prime number
            for i in range(0, 10):
                if primeTest(n) == "composite":
                    found = False
                    break
            if found:
                return n

def extendedGCD(a, b):
    #a*xi + b*yi = ri
    if b == 0:
        return (1, 0, a)
    #a*x1 + b*y1 = a
    x1 = 1
    y1 = 0
    #a*x2 + b*y2 = b
    x2 = 0
    y2 = 1
    while b != 0:
        q = a / b
        #ri = r(i-2) % r(i-1)
        r = a % b
        a = b
        b = r
        #xi = x(i-2) - q*x(i-1)
        x = x1 - q*x2
        x1 = x2
        x2 = x
        #yi = y(i-2) - q*y(i-1)
        y = y1 - q*y2
        y1 = y2
        y2 = y
    return(x1, y1, a)

def selectE(fn, halfkeyLength):
    while True:
        #e and fn are relatively prime
        e = random.randint(0, 1<<halfkeyLength)
        (x, y, r) = extendedGCD(e, fn)
        if r == 1:
            return e

def computeD(fn, e):
    (x, y, r) = extendedGCD(fn, e)
    #y maybe < 0, so convert it 
    if y < 0:
        return fn + y
    return y

def keyGeneration(keyLength):
    #generate public key and private key
    p = findPrime(keyLength/2)
    q = findPrime(keyLength/2)
    n = p * q
    fn = (p-1) * (q-1)
    e = selectE(fn, keyLength/2)
    d = computeD(fn, e)
    return (n, e, d)

def encryption(M, e, n):
    #RSA C = M^e mod n
    return fastExpMod(M, e, n)

def decryption(C, d, n):
    #RSA M = C^d mod n
    return fastExpMod(C, d, n)


#Unit Testing
(n, e, d) = keyGeneration(1024)
#AES keyLength = 256
X = random.randint(0, 1<<256)
C = encryption(X, e, n)
M = decryption(C, d, n)
print "PlainText:", X
print "Encryption of plainText:", C
print "Decryption of cipherText:", M
print "The algorithm is correct:", X == M
Python
相關文章
相關標籤/搜索