給定兩個單詞 word1 和 word2,計算出將 word1 轉換成 word2 所使用的最少操做數 。
你能夠對一個單詞進行以下三種操做:java
插入一個字符 刪除一個字符 替換一個字符
示例 1:python
輸入: word1 = "horse", word2 = "ros" 輸出: 3 解釋: horse -> rorse (將 'h' 替換爲 'r') rorse -> rose (刪除 'r') rose -> ros (刪除 'e')
示例 2:mysql
輸入: word1 = "intention", word2 = "execution" 輸出: 5 解釋: intention -> inention (刪除 't') inention -> enention (將 'i' 替換爲 'e') enention -> exention (將 'n' 替換爲 'x') exention -> exection (將 'n' 替換爲 'c') exection -> execution (插入 'u')
這個題目拿到題目基本就能想到DP,由於感受和咱們以前的爬樓梯啥的比較類似。這個題目比較爲hard主要是,狀態轉換比較複雜。sql
定義: dpi , word1這個字符串的前i個 -> word1這個字符串的前j 個字符,所須要的最小的步數架構
那麼有如下幾種狀況spa
不須要作變化,那麼 dpi = dp[i-1,j-1]code
咱們就須要動用上面那三種操做了:rem
時間複雜度 o(m * n)字符串
class Solution { public int minDistance(String word1, String word2) { int m = word1.length(); int n = word2.length(); int[][] dp = new int[m + 1][n + 1]; // base for (int i = 0; i <= m; i++) { dp[i][0] = i; } for (int j = 0; j <= n; j++) { dp[0][j] = j; } for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (word1.charAt(i) == word2.charAt(j)) { dp[i + 1][j + 1] = dp[i][j]; } else { int add = dp[i][j + 1]; int delete = dp[i + 1][j]; int rep = dp[i][j]; dp[i + 1][j + 1] = Math.min(Math.min(add, delete), rep) + 1; } } } return dp[m][n]; } }
class Solution: def minDistance(self, word1, word2): """ :type word1: str :type word2: str :rtype: int """ m = len(word1) n = len(word2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): dp[i][0] = i for i in range(n + 1): dp[0][i] = i for i in range(m): for j in range(n): if word1[i] == word2[j]: dp[i + 1][j + 1] = dp[i][j] else: add = dp[i][j + 1] delete = dp[i + 1][j] replace = dp[i][j] dp[i + 1][j + 1] = min(add, delete, replace) + 1 return dp[m][n]