#imread
import cv2
img0 = cv2.imread('canton.jpg',0)
img1 = cv2.imread('canton.jpg',1)
print(img0.shape)
print(img1.shape)
cv2.imshow('src',img0)
cv2.imshow('src',img1)
cv2.waitKey(0)
複製代碼
將圖像從一個顏色空間轉換爲另外一個顏色空間。python
該功能將輸入圖像從一個顏色空間轉換爲另外一個顏色空間。若是要轉換RGB顏色空間,則應明確指定通道的順序(RGB或BGR)。請注意,OpenCV中的默認顏色格式一般被稱爲RGB,但它其實是BGR(字節相反)。所以,標準(24位)彩色圖像中的第一個字節將是一個8位藍色份量,第二個字節將是綠色,第三個字節將是紅色。第四,第五和第六個字節將成爲第二個像素(藍色,而後是綠色,而後是紅色),依此類推數組
cv::cvtColor()支持多種顏色空間之間的轉換,其支持的轉換類型和轉換碼以下:dom
一、RGB和BGR(opencv默認的彩色圖像的顏色空間是BGR)顏色空間的轉換函數
cv::COLOR_BGR2RGB cv::COLOR_RGB2BGR cv::COLOR_RGBA2BGRA cv::COLOR_BGRA2RGBAui
二、向RGB和BGR圖像中增添alpha通道spa
cv::COLOR_RGB2RGBA cv::COLOR_BGR2BGRA3d
三、從RGB和BGR圖像中去除alpha通道code
cv::COLOR_RGBA2RGB cv::COLOR_BGRA2BGRorm
四、從RBG和BGR顏色空間轉換到灰度空間cdn
cv::COLOR_RGB2GRAY cv::COLOR_BGR2GRAY
cv::COLOR_RGBA2GRAY
cv::COLOR_BGRA2GRAY
五、從灰度空間轉換到RGB和BGR顏色空間
cv::COLOR_GRAY2RGB cv::COLOR_GRAY2BGR
cv::COLOR_GRAY2RGBA cv::COLOR_GRAY2BGRA
六、RGB和BGR顏色空間與BGR565顏色空間之間的轉換
cv::COLOR_RGB2BGR565 cv::COLOR_BGR2BGR565 cv::COLOR_BGR5652RGB cv::COLOR_BGR5652BGR cv::COLOR_RGBA2BGR565 cv::COLOR_BGRA2BGR565 cv::COLOR_BGR5652RGBA cv::COLOR_BGR5652BGRA
七、灰度空間域BGR565之間的轉換
cv::COLOR_GRAY2BGR555 cv::COLOR_BGR5552GRAY
八、RGB和BGR顏色空間與CIE XYZ之間的轉換
cv::COLOR_RGB2XYZ cv::COLOR_BGR2XYZ cv::COLOR_XYZ2RGB cv::COLOR_XYZ2BGR
九、RGB和BGR顏色空間與uma色度(YCrCb空間)之間的轉換
cv::COLOR_RGB2YCrCb cv::COLOR_BGR2YCrCb cv::COLOR_YCrCb2RGB cv::COLOR_YCrCb2BGR
十、RGB和BGR顏色空間與HSV顏色空間之間的相互轉換
cv::COLOR_RGB2HSV
cv::COLOR_BGR2HSV
cv::COLOR_HSV2RGB
cv::COLOR_HSV2BGR
十一、RGB和BGR顏色空間與HLS顏色空間之間的相互轉換
cv::COLOR_RGB2HLS cv::COLOR_BGR2HLS cv::COLOR_HLS2RGB cv::COLOR_HLS2BGR
十二、RGB和BGR顏色空間與CIE Lab顏色空間之間的相互轉換
cv::COLOR_RGB2Lab cv::COLOR_BGR2Lab cv::COLOR_Lab2RGB cv::COLOR_Lab2BGR
1三、RGB和BGR顏色空間與CIE Luv顏色空間之間的相互轉換
cv::COLOR_RGB2Luv cv::COLOR_BGR2Luv cv::COLOR_Luv2RGB cv::COLOR_Luv2BGR
1四、Bayer格式(raw data)向RGB或BGR顏色空間的轉換
cv::COLOR_BayerBG2RGB
cv::COLOR_BayerGB2RGB
cv::COLOR_BayerRG2RGB
cv::COLOR_BayerGR2RGB
cv::COLOR_BayerBG2BGR
cv::COLOR_BayerGB2BGR
cv::COLOR_BayerRG2BGR
cv::COLOR_BayerGR2BGR
cvtColor(
- InputArray 輸入圖像:8位無符號,16位無符號(CV_16UC ...)或單精度浮點。,
- OutputArray 輸出與src相同大小和深度的圖像。,
- INT 顏色空間轉換代碼,
- INT 目標圖像中的通道數量; 若是參數爲0,則通道的數量自動從src和代碼中導出。 )
import cv2
img = cv2.imread('canton.jpg',1)
dst = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
import cv2
import numpy as np
img = cv2.imread('canton.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
b = int(b)
g = int(g)
r = int(r)
gray = r*0.2+g*0.5+b*0.2
dst[i,j] = np.uint8(gray)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
import cv2
import numpy as np
img = cv2.imread('canton.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst = np.zeros((height,width,1),np.uint8)
for i in range(0,height):
for j in range(0,width):
grayPixel = gray[i,j]
dst[i,j] = 255-grayPixel
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
import cv2
import numpy as np
img = cv2.imread('canton.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
dst[i,j] = (255-b,255-g,255-r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
import cv2
import numpy as np
img = cv2.imread('cantontower.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
for m in range(0,600):
for n in range(300,600):
# pixel ->10*10
if m%10 == 0 and n%10==0:
for i in range(0,10):
for j in range(0,10):
(b,g,r) = img[m,n]
img[i+m,j+n] = (b,g,r)
cv2.imshow('dst',img)
cv2.waitKey(0)
複製代碼
結果:
import cv2
import numpy as np
import random
img = cv2.imread('cantontower.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
mm = 8
for m in range(0,height-mm):
for n in range(0,width-mm):
index = int(random.random()*8)#0-8
(b,g,r) = img[m+index,n+index]
dst[m,n] = (b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])
- 參數
- src1 圖片1連接
- alpha 是src1透明度
- src2 圖片2連接
- beta 是src2透明度
- gamma 一個加到權重總和上的標量值,dst = src1 * alpha + src2 * beta + gamma;
- dtype 輸出陣列的可選深度,有默認值-1。;當兩個輸入數組具備相同的深度時,這個參數設置爲-1(默認值),即等同於src1.depth()
import cv2
import numpy as np
img0 = cv2.imread('cantontower.jpg',1)
img1 = cv2.imread('qilou.jpg',1)
imgInfo = img0.shape
height = imgInfo[0]
width = imgInfo[1]
roiH = int(height/2)
roiW = int(width/2)
img0ROI = img0[0:roiH,0:roiW]
img1ROI = img1[0:roiH,0:roiW]
dst = np.zeros((roiH,roiW,3),np.uint8)
dst = cv2.addWeighted(img0ROI,0.5,img1ROI,0.5,0)
# dst = src1 * alpha + src2 * beta + gamma;
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT)
參數
- src,輸入圖像,即源圖像,填Mat類的對象便可。它能夠是單獨的任意通道數的圖片,但須要注意,圖片深度應該爲CV_8U,CV_16U, CV_16S, CV_32F 以及 CV_64F之一。
- dst,即目標圖像,須要和源圖片有同樣的尺寸和類型。好比能夠用Mat::Clone,以源圖片爲模板,來初始化獲得如假包換的目標圖。
- ksize,高斯內核的大小。其中ksize.width和ksize.height能夠不一樣,但他們都必須爲正數和奇數(並不能理解)。或者,它們能夠是零的,它們都是由sigma計算而來。
- sigmaX,表示高斯核函數在X方向的的標準誤差。
- sigmaY,表示高斯核函數在Y方向的的標準誤差。若sigmaY爲零,就將它設爲sigmaX,若是sigmaX和sigmaY都是0,那麼就由ksize.width和ksize.height計算出來。爲告終果的正確性着想,最好是把第三個參數Size,第四個參數sigmaX和第五個參數sigmaY所有指定到。
- borderType,用於推斷圖像外部像素的某種邊界模式。注意它有默認值BORDER_DEFAULT。
Canny(InputArray image,OutputArray edges,double threshold1,double threshold2,int apertureSize = 3,bool L2gradient = false )
參數
- image 輸入8位圖像.
- edges 輸出邊緣圖; 單通道8位圖像,其大小與圖像相同。
- threshold1 滯後程序的第一閾值。
- threshold2 滯後程序的第二閾值。
- apertureSize Sobel算子的光圈大小。
- L2gradient 一個標誌,代表是否有更準確的 L2 norm =(dI/dx)2+(dI/dy)2,仍是默認的 L1 norm =|dI/dx|+|dI/dy| 就行 ( L2gradient=false )
import cv2
import numpy as np
import random
img = cv2.imread('cantontower.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow('src',img)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgG = cv2.GaussianBlur(gray,(3,3),0)
dst = cv2.Canny(img,50,50)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
邊緣是圖像中灰度發生急劇變化的區域邊界。圖像灰度的變化狀況能夠用圖像灰度分佈的梯度來表示,數字圖像中求導是利用差分近似微分來進行的,實際上經常使用空域微分算子經過卷積來完成
Sobel算子是高斯平滑與微分操做的結合體。因此其抗噪能力很是強,用途較多。通常的sobel算子包含x與y兩個方向,算子模板爲:
在opencv函數中,還可以設置卷積核(ksize)的大小,假設ksize=-1,就演變爲3*3的Scharr算子,模板無非變了個數字:
import cv2
import numpy as np
import random
import math
img = cv2.imread('cantontower.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow('src',img)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst = np.zeros((height,width,1),np.uint8)
for i in range(0,height-2):
for j in range(0,width-2):
gy = -gray[i,j]*1-gray[i,j+1]*2-gray[i,j+2]*1+gray[i+2,j]*1+gray[i+2,j+1]*2+gray[i+2,j+2]*1
gx = -gray[i,j]*1+gray[i+2,j]*1-gray[i,j+1]*2+gray[i+2,j+1]*2-gray[i,j+2]*1+gray[i+2,j+2]*1
grad = math.sqrt(gx*gx+gy*gy)
if grad>50:
dst[i,j] = 255
else:
dst[i,j] = 0
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
import cv2
import numpy as np
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# newP = gray0-gray1+150
dst = np.zeros((height,width,1),np.uint8)
for i in range(0,height):
for j in range(0,width-1):
grayP0 = int(gray[i,j])
grayP1 = int(gray[i,j+1])
newP = grayP0-grayP1+150
if newP > 255:
newP = 255
if newP < 0:
newP = 0
dst[i,j] = newP
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
import cv2
import numpy as np
img = cv2.imread('cantontower.jpg',1)
cv2.imshow('src',img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
b = b*1.5
g = g*1.3
r = r
if b>255:
b = 255
if g>255:
g = 255
if r>255:
r = 255
dst[i,j]=(b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果:
import cv2
import numpy as np
img = cv2.imread('image00.jpg',1)
cv2.imshow('src',img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst = np.zeros((height,width,3),np.uint8)
for i in range(4,height-4):
for j in range(4,width-4):
array1 = np.zeros(8,np.uint8)
for m in range(-4,4):
for n in range(-4,4):
p1 = int(gray[i+m,j+n]/32)
array1[p1] = array1[p1]+1
currentMax = array1[0]
l = 0
for k in range(0,8):
if currentMax<array1[k]:
currentMax = array1[k]
l = k
for m in range(-4,4):
for n in range(-4,4):
if gray[i+m,j+n]>=(l*32) and gray[i+m,j+n]<=((l+1)*32):
(b,g,r) = img[i+m,j+n]
dst[i,j] = (b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
複製代碼
結果: