更新、更全的《數據結構與算法》的更新網站,更有python、go、人工智能教學等着你:<http://www.javashuo.com/article/p-zfinzipt-hh.htmlnode
給定兩棵樹T1和T2。若是T1能夠經過若干次左右孩子互換就變成T2,則咱們稱兩棵樹是「同構的」。現給定兩棵樹,請你判斷它們是不是同構的。python
輸入格式:輸入給出2棵二叉樹的信息:算法
先在一行中給出該樹的結點樹,隨後N行數據結構
若是孩子結點爲空,則在相應位置給出「-」app
以下圖所示,有多種表示的方式,咱們列出如下兩種:網站
搜到一篇也是講這個的,可是那篇並無徹底用到單向鏈表的方法,因此研究了一下,寫了一個是徹底用單向鏈表的方法:人工智能
其實應該有更優雅的刪除整個單向列表的方法,好比頭設爲none,可能會改進下?spa
# python語言實現 L1 = list(map(int, input().split())) L2 = list(map(int, input().split())) # 節點 class Node: def __init__(self, coef, exp): self.coef = coef self.exp = exp self.next = None # 單鏈表 class List: def __init__(self, node=None): self.__head = node # 爲了訪問私有類 def gethead(self): return self.__head def travel(self): cur1 = self.__head cur2 = self.__head if cur1.next != None: cur1 = cur1.next else: print(cur2.coef, cur2.exp, end="") return while cur1.next != None: print(cur2.coef, cur2.exp, end=" ") cur1 = cur1.next cur2 = cur2.next print(cur2.coef, cur2.exp, end=" ") cur2 = cur2.next print(cur2.coef, cur2.exp, end="") # add item in the tail def append(self, coef, exp): node = Node(coef, exp) if self.__head == None: self.__head = node else: cur = self.__head while cur.next != None: cur = cur.next cur.next = node def addl(l1, l2): p1 = l1.gethead() p2 = l2.gethead() l3 = List() while (p1 is not None) & (p2 is not None): if (p1.exp > p2.exp): l3.append(p1.coef, p1.exp) p1 = p1.next elif (p1.exp < p2.exp): l3.append(p2.coef, p2.exp) p2 = p2.next else: if (p1.coef + p2.coef == 0): p1 = p1.next p2 = p2.next else: l3.append(p2.coef + p1.coef, p1.exp) p2 = p2.next p1 = p1.next while p1 is not None: l3.append(p1.coef, p1.exp) p1 = p1.next while p2 is not None: l3.append(p2.coef, p2.exp) p2 = p2.next if l3.gethead() == None: l3.append(0, 0) return l3 def mull(l1, l2): p1 = l1.gethead() p2 = l2.gethead() l3 = List() l4 = List() if (p1 is not None) & (p2 is not None): while p1 is not None: while p2 is not None: l4.append(p1.coef * p2.coef, p1.exp + p2.exp) p2 = p2.next l3 = addl(l3, l4) l4 = List() p2 = l2.gethead() p1 = p1.next else: l3.append(0, 0) return l3 def L2l(L): l = List() L.pop(0) for i in range(0, len(L), 2): l.append(L[i], L[i + 1]) return l l1 = L2l(L1) l2 = L2l(L2) l3 = List() l3 = mull(l1, l2) l3.travel() print("") l3 = List() l3 = addl(l1, l2) l3.travel()