JavaShuo
欄目
標籤
Squeeze-and-Excitation Networks
時間 2021-07-13
標籤
深度學習
SENET
简体版
原文
原文鏈接
寫在後面:applying a global image feature vecto rto generate caption may lead to sub-optimal results due to the irrelevant regions(和這篇文章有沒有關係……………………………….) 摘要 卷積神經網絡是建立在卷積操作之上的,卷積操作提取信息特徵通過混合空間和通道信息一直 在局部感
>>阅读原文<<
相關文章
1.
Convolution Networks 和Deconvolution Networks
2.
provider networks和self-service networks
3.
Quantization Networks
4.
Maxout Networks
5.
SE-Networks
6.
LSTM Networks
7.
Neural Networks
8.
Highway Networks
9.
Capsule Networks
10.
Memory Networks
更多相關文章...
•
Docker Compose
-
Docker教程
•
Web 詞彙表
-
網站建設指南
相關標籤/搜索
networks
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Convolution Networks 和Deconvolution Networks
2.
provider networks和self-service networks
3.
Quantization Networks
4.
Maxout Networks
5.
SE-Networks
6.
LSTM Networks
7.
Neural Networks
8.
Highway Networks
9.
Capsule Networks
10.
Memory Networks
>>更多相關文章<<