SQLAlchemy是一個基於Python實現的ORM框架。該框架創建在 DB API之上,使用關係對象映射進行數據庫操做,簡言之即是:將類和對象轉換成SQL,而後使用數據API執行SQL並獲取執行結果。html
# 安裝 pip3 install sqlalchemy
組成部分:python
SQLAlchemy自己沒法操做數據庫,其必須以pymsql等第三方插件,Dialect用於和數據API進行交流,根據配置文件的不一樣調用不一樣的數據庫API,從而實現對數據庫的操做,如:mysql
下面這些連接是字符串:在Dialect裏
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
要使用這些,必須先安裝對應的 mysqldb、pymysql、mysqlconnector、 cx_oracle
1. 鏈接池sql
示例1:鏈接池始終只有一個連接數據庫
import time import threading import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.engine.base import Engine engine = create_engine( # 用pymysql連接mysql; # root:123 用戶名:密碼 # 127.0.0.1:3006 數據庫ip及端口 # t1:數據庫名 # charset=utf8:編碼 "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8", max_overflow=2, # 超過鏈接池大小外最多建立的鏈接(即5個已經不夠用了,最多再能建立2個,也就是總共最多建立7個連接池) pool_size=5, # 鏈接池大小,最多5個 pool_timeout=30, # 池中沒有線程最多等待的時間(秒),不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) conn = engine.raw_connection() # 去連接池拿一個連接 cursor = conn.cursor() # 在連接裏拿個cursor,這裏其實已經執行了pymysql裏的功能了 # 執行sql語句 cursor.execute( "select * from t1" ) result = cursor.fetchall() cursor.close() conn.close()
示例二:鏈接池有多個連接django
import time import threading import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.engine.base import Engine engine = create_engine( # 用pymysql連接mysql; # root:123 用戶名:密碼 # 127.0.0.1:3006 數據庫ip及端口 # t1:數據庫名 # charset=utf8:編碼 "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接(即5個已經不夠用了,最多再能建立2個,也就是總共最多建立7個連接池) pool_size=5, # 鏈接池大小,最多5個 pool_timeout=30, # 池中沒有線程最多等待的時間(秒),不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) def task(arg): conn = engine.raw_connection() # 去連接池拿一個連接 cursor = conn.cursor() # 在連接裏拿個cursor,這裏其實已經執行了pymysql裏的功能了 # 執行sql語句 cursor.execute( "select * from t1" "select sleep(2)" ) result = cursor.fetchall() cursor.close() conn.close() # 建立了20個線程 # 若是速度特別快,可能一個連接就夠了 # 若是速度特別慢,多是5個5個的執行的。 for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()
2. ORMflask
a.定義數據庫表、建立表單、刪除表安全
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index # 標準寫法: Base = declarative_base() # 1. 定義表名及表裏的字段,繼承Base class Users(Base): __tablename__ = 'users' # 生成的數據庫表名 # 表裏的具體字段 # id列,id是主鍵 id = Column(Integer, primary_key=True) # name列,字符串類型(最大32個字符),index是索引,nullable:是否可爲空,Flase表示不可爲空 name = Column(String(32), index=True, nullable=False) # 2. 單純使用sqlAlchemy建立表 def init_db(): """ 根據類建立數據庫表 :return: """ # 連接數據庫 engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接 pool_size=5, # 鏈接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) Base.metadata.create_all(engine) # 讀取Base裏全部的表,在數據庫裏生成表 # 刪除表 def drop_db(): """ 根據類刪除數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接 pool_size=5, # 鏈接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) Base.metadata.drop_all(engine) # 3.修改表單純使用sqlalchemy作不到,須要用其餘組件才能夠。 if __name__ == '__main__': drop_db() init_db()
b.操做數據庫表- 增刪改查session
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from models import Users # 建立連接池 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Connection = sessionmaker(bind=engine) # 每次執行數據庫操做時,都須要建立一個Connection連接 conn = Connection() # ############# 執行ORM操做-增長操做 ############# obj1 = Users(name="alex1") conn.add(obj1) # 提交事務 conn.commit() # 關閉session conn.close()
1. 定義單表架構
import datetime from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index Base = declarative_base() # ##################### 單表示例 ######################### class Users(Base): __tablename__ = 'users' # 表裏的字段 id = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=False) email = Column(String(32), unique=True) # unique 表示惟一索引 ctime = Column(DateTime, default=datetime.datetime.now) # 建立時間:datetime.datetime.now,now後面不能加(),由於它是靜態字段 extra = Column(Text, nullable=True) # 建立聯合惟一索引 __table_args__ = ( # UniqueConstraint('id', 'name', name='uix_id_name'), # id 和 name 作了聯合惟一 # Index('ix_id_name', 'name', 'email'), # name 和 email 作了聯合索引 ) # 問題: # 1. 字符編碼怎麼指定?
2. 定義多表
# ##################### 一對多示例 ######################### class Hobby(Base): __tablename__ = 'hobby' id = Column(Integer, primary_key=True) caption = Column(String(50), default='籃球') class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) hobby_id = Column(Integer, ForeignKey("hobby.id")) # 經過表名.字段名關聯 # 與生成表結構無關,僅用於查詢方便 hobby = relationship("Hobby", backref='pers')
# ##################### 多對多示例 ######################### # 多對多關係表 class Server2Group(Base): __tablename__ = 'server2group' id = Column(Integer, primary_key=True, autoincrement=True) # 在這裏生成多對多關係的 server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) # 與生成表結構無關,僅用於查詢方便 servers = relationship('Server', secondary='server2group', backref='groups') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False)
3. 執行生成並建立表
def init_db(): """ 根據類建立數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接 pool_size=5, # 鏈接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) Base.metadata.create_all(engine) if __name__ == '__main__': init_db()
4. 執行刪除表
def drop_db(): """ 根據類刪除數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接 pool_size=5, # 鏈接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) Base.metadata.drop_all(engine) if __name__ == '__main__': drop_db()
5. 操做表
上面分別介紹了表的建立,下面對錶進行操做的詳細介紹
建立表通常只操做一次,因此放到 models.py文件裏
import datetime from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index from sqlalchemy.orm import relationship Base = declarative_base() # ##################### 單表示例 ######################### class Users(Base): __tablename__ = 'users' # 表裏的字段 id = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=False) email = Column(String(32), unique=True) # unique 表示惟一索引 ctime = Column(DateTime, default=datetime.datetime.now) # 建立時間:datetime.datetime.now,now後面不能加(),由於它是靜態字段 extra = Column(Text, nullable=True) # 建立聯合惟一索引 __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), # id 和 name 作了聯合惟一 Index('ix_id_name', 'name', 'email'), # name 和 email 作了聯合索引 ) # 問題: # 1. 字符編碼怎麼指定? # ##################### 一對多示例 ######################### class Hobby(Base): __tablename__ = 'hobby' id = Column(Integer, primary_key=True) caption = Column(String(50), default='籃球') class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) hobby_id = Column(Integer, ForeignKey("hobby.id")) # 經過表名.字段名關聯 # 與生成表結構無關,僅用於查詢方便 hobby = relationship("Hobby", backref='pers') # ##################### 多對多示例 ######################### # 多對多關係表 class Server2Group(Base): __tablename__ = 'server2group' id = Column(Integer, primary_key=True, autoincrement=True) # 在這裏生成多對多關係的 server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) # 與生成表結構無關,僅用於查詢方便 servers = relationship('Server', secondary='server2group', backref='groups') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) def init_db(): """ 根據類建立數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接 pool_size=5, # 鏈接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) Base.metadata.create_all(engine) if __name__ == '__main__': init_db() def drop_db(): """ 根據類刪除數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過鏈接池大小外最多建立的鏈接 pool_size=5, # 鏈接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,不然報錯 pool_recycle=-1 # 多久以後對線程池中的線程進行一次鏈接的回收(重置) ) Base.metadata.drop_all(engine) if __name__ == '__main__': drop_db()
1. SQLAlchemy之兩種鏈接方式:
(1)第一種數據庫鏈接方式 sessionmaker
from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine import models # 1.建立鏈接池 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5) Conn = sessionmaker(bind=engine) # 2.從鏈接池中獲取數據庫鏈接 conn = Conn() # ###############執行ORM操做##################### # 3.執行ORM操做 obj1 = models.Users(name="alex1",email="alex1@xx.com") conn.add(obj1) conn.commit() # 4.關閉數據庫鏈接(將鏈接放回鏈接池) conn.close()
(2)第二種數據庫鏈接方式 scoped_session --- 推薦這種
from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session # 第二種方式 import models # 1.建立鏈接池 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5) Conn = sessionmaker(bind=engine) # 2.從鏈接池中獲取數據庫鏈接 conn = scoped_session(Conn) # ###############執行ORM操做##################### # 3.執行ORM操做 obj1 = models.Users(name="alex1",email="alex1@xx.com") # 本質執行do函數:add conn.add(obj1) # 本質調用do函數:commit conn.commit() # 4.關閉數據庫鏈接(將鏈接放回鏈接池) conn.close()
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session from models import Users engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) """ # 線程安全,基於本地線程實現每一個線程用同一個session # 特殊的:scoped_session中有原來方法的Session中的一下方法: public_methods = ( '__contains__', '__iter__', 'add', 'add_all', 'begin', 'begin_nested', 'close', 'commit', 'connection', 'delete', 'execute', 'expire', 'expire_all', 'expunge', 'expunge_all', 'flush', 'get_bind', 'is_modified', 'bulk_save_objects', 'bulk_insert_mappings', 'bulk_update_mappings', 'merge', 'query', 'refresh', 'rollback', 'scalar' ) """ session = scoped_session(Session) # ############# 執行ORM操做 ############# obj1 = Users(name="alex1") session.add(obj1) # 提交事務 session.commit() # 關閉session session.close()
2. SQLAlchemy的基本操做-增刪改查(*****)
from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine import models # 1.建立鏈接池 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5) Conn = sessionmaker(bind=engine) # 2.從鏈接池中獲取數據庫鏈接 conn = Conn() # ###############執行ORM操做##################### # 3.執行ORM操做 ############### 增長 ############# # add 增單條增長 obj1 = models.Users(name="alex1",email="alex1@xx.com") # 增長的時候先建立一個對象,而後放到add()或者add_all() conn.add(obj1) conn.commit() # add_all():批量增長 conn.add_all([ models.Users(name="alex2",email="alex2@xx.com"), models.Users(name="alex3",email="alex3@xx.com"), models.Users(name="alex4",email="alex4@xx.com") ]) conn.commit() ############### 查詢 ############# # 查的表:models.Users; user_list = conn.query(models.Users).all() # all()查出全部的內容了 for row in user_list: print(row.id) print(row.name) print(row.email) print(row.ctime) conn.commit() """ 其餘查詢,下面的Users前面都省略了models.,用的時候加上 r1 = conn.query(Users).all() r2 = conn.query(Users.name.label('xx'), Users.age).all() # label('xx') 至關於取了個別名 r3 = conn.query(Users).filter(Users.name == "alex").all() # filter裏傳的是表達式 r4 = conn.query(Users).filter_by(name='alex').all() # filter_by 裏面傳的是參數 r5 = conn.query(Users).filter_by(name='alex').first() # first,第一個對象 # 構造複雜點的sql # text("id<:value and name=:name"):意識是id<x,name=y,後面的params是具體的參數;order_by:是排序 r6 = conn.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all() # 構造更復雜點的sql r7 = conn.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all() """ # 查詢出id > 2的數據 user_list = conn.query(models.Users).filter(models.Users.id > 2) conn.commit() ############### 刪除 ############# conn.query(models.Users).filter(models.Users.id > 2).delete() conn.commit() ############### 更改 ############# # 改的時候,update傳的是字典 conn.query(models.Users).filter(models.Users.id == 1).update({"name":"eric"}) # 字符串相加,後面要寫synchronize_session = False conn.query(models.Users).filter(models.Users.id > 0).update({models.Users.name:models.Users.name + "999"}, synchronize_session = False) # 若是是數字相加,要加上synchronize_session = "evaluate" conn.query(models.Users).filter(models.Users.id > 0).update({models.Users.age:models.Users.age + 1}, synchronize_session = "evaluate") conn.commit() # 4.關閉數據庫鏈接(將鏈接放回鏈接池) conn.close()
#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from db import Users, Hosts engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # ################ 添加 ################ """ obj1 = Users(name="wupeiqi") session.add(obj1) session.add_all([ Users(name="wupeiqi"), Users(name="alex"), Hosts(name="c1.com"), ]) session.commit() """ # ################ 刪除 ################ """ session.query(Users).filter(Users.id > 2).delete() session.commit() """ # ################ 修改 ################ """ session.query(Users).filter(Users.id > 0).update({"name" : "099"}) session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False) session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate") session.commit() """ # ################ 查詢 ################ """ r1 = session.query(Users).all() r2 = session.query(Users.name.label('xx'), Users.age).all() r3 = session.query(Users).filter(Users.name == "alex").all() r4 = session.query(Users).filter_by(name='alex').all() r5 = session.query(Users).filter_by(name='alex').first() r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all() r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all() """ session.close() 基本增刪改查示例
3. SQLAlchemy的經常使用操做(*****)
分組、分頁、模糊查詢等
########### 條件 ########### # filter與filter_by的區別:filter裏傳參數,filter_by裏傳表達式 ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() # ,表示 and ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() # in_ 固定搭配 ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # ~ 表示非 除了她之外 ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 嵌套 # 導入 and_ 和 or_ from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() # 表示or_裏的兩個都是or的關係 # 能夠嵌套 ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "" )).all() ############ 通配符 ########### ret = session.query(Users).filter(Users.name.like('e%')).all() # 以e開頭,%表明全部字符 ret = session.query(Users).filter(~Users.name.like('e%')).all() # 不以e開頭,%表明全部字符 ############ 限制 ############ ret = session.query(Users)[1:2] ########### 排序 ############## ret = session.query(Users).order_by(Users.name.desc()).all() # 根據name按照從大到小排序 ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 寫多個,優先按照name從大到小排序,若有重名,再按id從小到大排 ############## 分組 ############### from sqlalchemy.sql import func # 導入聚合函數 ret = session.query(Users).group_by(Users.extra).all() # 根據extra分組 ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() ############# 連表 ############## ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() # inner join 和 left join的區別? join(Favor).all()是一個總體 # 表裏有外鍵,才能夠這麼連表 ret = session.query(Person).join(Favor, isouter=True).all() # left join Person left join Favor # 若是沒有外鍵,能夠寫參數 ''' .all():表示取值 若是想看sql語句是什麼,就先去掉.all() ret = session.query(Person).join(Favor, isouter=True) print(ret) 獲得的就是 sql 語句 ''' ############# 組合 ############ # union 和 union_all q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
4.SqlAlchemy也支持原生sql(重點也支持原生sql)
上面是orm裏的sql操做,若是還有更復雜的sql,就能夠寫原生sql
#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 查詢 # cursor = session.execute('select * from users') # result = cursor.fetchall() # 添加 cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'}) session.commit() print(cursor.lastrowid) session.close()
5.SQLAlchemy之一對多relationship(****)
import datetime from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index from sqlalchemy.orm import relationship Base = declarative_base() class Hobby(Base): __tablename__ = "hobby" id = Column(Integer,primary_key=True) caption = Column(String(50),default="籃球") class Person(Base): __tablename__ = "person" nid = Column(Integer,primary_key=True) name = Column(String(32),index=True, nullable=True) hobby_id = Column(Integer,ForeignKey('hobby.id')) # relationship與數據庫不要緊,不會再數據庫裏生成這個字段的。關聯的是Hobby表,做用是快速幫你作連表操做 hobby = relationship("Hobby", backref = 'pers') # backref 表示能夠反向關聯
# -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy # 1.建立鏈接池 engine = create_engine( "mysql+pymysql://root@127.0.0.1:3306/s7?charset=utf-8", max_overflow = 0, pool_sise =5 ) Session = sessionmaker(bind=engine) # 2. 從鏈接池中獲取數據庫鏈接 session = Session() # 3. 執行ORM操做 # 先分別給兩張表裏新增數據 # 給hobby裏新增數據 session.add_all([ models.Hobby(caption='姑娘'), models.Hobby(caption='足球'), ]) session.commit() # 給person表裏新增人 session.add_all([ models.Person(name='李志',id = 2), models.Person(name='龍龍',id = 1), models.Person(name='大龍',id = 3), ]) session.commit() # 查全部的用戶表person表 person_list = session.query(models.Person).all() for row in person_list: print(row.name, row.hobby_id) # 需求:把hobby_id對應的中文名字所有拿出來--連表操做 喜歡足球的全部人 # 方式一 person_list = session.query(models.Person.name, models.Hobby.caption).join(models.Hobby, isouter=True).all() for row in person_list: print(row.name, row.hobby_id, row.caption) # 方式二:經過加relationship自動,進行自動連表查詢 # 正向關聯 person_list = session.query(models.Person).all() for row in person_list: print(row.name, row.hobby.caption) # 或:也能夠進行反向關聯 喜歡姑娘的全部人 obj = session.query(models.Hobby).filter(models.Hobby.id == 1).first() persons = obj.pers print(persons) # releationship也能夠作增長 hb = models.Hobby(caption = "人妖") hb.pers = [models.Person(name = "liuwu"),models.Person=(name = "liz")] session.add(hb) session.commit() # obj = models.Person(name = "lili", hobby = models.Hobby(caption = "人妖2")) session.add(obj) session.commit() # 4. 關閉數據庫鏈接(將鏈接放回鏈接池)
#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts, Hobby, Person engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 添加 """ session.add_all([ Hobby(caption='乒乓球'), Hobby(caption='羽毛球'), Person(name='張三', hobby_id=3), Person(name='李四', hobby_id=4), ]) person = Person(name='張九', hobby=Hobby(caption='姑娘')) session.add(person) hb = Hobby(caption='人妖') hb.pers = [Person(name='文飛'), Person(name='博雅')] session.add(hb) session.commit() """ # 使用relationship正向查詢 """ v = session.query(Person).first() print(v.name) print(v.hobby.caption) """ # 使用relationship反向查詢 """ v = session.query(Hobby).first() print(v.caption) print(v.pers) """ session.close() 基於relationship操做ForeignKey
6.SQLAlchemy之多對多relationship
import datetime from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index from sqlalchemy.orm import relationship Base = declarative_base() # 多對多關係表 class Server2Group(Base): __tablename__ = 'server2group' id = Column(Integer, primary_key=True, autoincrement=True) # 在這裏生成多對多關係的 server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) # 與生成表結構無關,僅用於查詢方便 servers = relationship('Server', secondary='server2group', backref='groups') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False)
#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 添加 """ session.add_all([ Server(hostname='c1.com'), Server(hostname='c2.com'), Group(name='A組'), Group(name='B組'), ]) session.commit() s2g = Server2Group(server_id=1, group_id=1) session.add(s2g) session.commit() gp = Group(name='C組') gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')] session.add(gp) session.commit() ser = Server(hostname='c6.com') ser.groups = [Group(name='F組'),Group(name='G組')] session.add(ser) session.commit() """ # 使用relationship正向查詢 """ v = session.query(Group).first() print(v.name) print(v.servers) """ # 使用relationship反向查詢 """ v = session.query(Server).first() print(v.hostname) print(v.groups) """ session.close()
7.其餘
#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text, func from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 關聯子查詢 subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar() result = session.query(Group.name, subqry) """ SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid FROM server WHERE server.id = `group`.id) AS anon_1 FROM `group` """ # (SELECT count(server.id) 只能一個值 # 原生SQL """ # 查詢 cursor = session.execute('select * from users') result = cursor.fetchall() # 添加 cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'}) session.commit() print(cursor.lastrowid) """ session.close() 其餘
就是Flask和SQLALchemy的管理者,讓flask和sqlAlchemy無縫鏈接起來
本質上仍是目錄和文件的管理
因此目錄結構要保存好。
文件見:連接:https://pan.baidu.com/s/1aOaeCGCEPkTQnLe27Sdnow 密碼:gzsq
SqlAlchemy自己不支持更改表結構,因此須要藉助Flask-Migrate第三方組件操做
做用:flask-migrate用於實現相似Django數據庫遷移:makemigrations/migrate ->migrate/upgrade
# 安裝 pip install flask-migrate
from flask_script import Manager from flask import Flask from sansa import create_app, db # 數據庫遷移須要配置的項 # 第一:導入 from flask_migrate import Migrate, MigrateCommand app = create_app() manage = Manager(app) # 第二 migrate = Migrate(app, db) # 第三 manage.add_command('db', MigrateCommand) ''' 配置好上面三項,就能夠在cmd裏執行下面的命令遷移數據庫了 數據庫遷移命令: python manage.py db init python manage.py db migrate python manage.py db upgrade ''' if __name__ == '__main__': manage.run()
做用:用於實現相似 django python manage.py runserver...這樣的腳本
# 安裝 pip install flask-script
# 使用 from flask_script import Manager # 導入 Manage from flask import Flask app = Flask(__name__) manage = Manager(app) # 實例化manage app.route("/") def index(): return "hello flask-script" if __name__ == '__main__': manage.run()
先右鍵run起來程序,而後就能夠在命令行裏經過命令運行了
# 經過命令運行 python manage.py runserver
from flask_script import Manager from flask import Flask # 相似位置參數方式 @manage.command() def custom(arg): ''' 自定義命令 執行: python manage.py custom 123 ( 123 是傳入的參數 ) custom 表示要執行這個函數 :param arg: :return: ''' # 能夠把離線腳本放入這裏 from sansa import create_app from sansa import db app = create_app() with app.app_context(): db.create_all() # 相似關鍵字參數方式 @manage.option('-n', '--name', dest = 'name') @manage.option('-u','--url',dest = 'url') def cmd(name,url): ''' 自定義命令 執行: python manage.py cmd - n mamingchen -u http://www.baidu.com - n ,-u: 都表示要傳參數了 :param name: :param url: :return: ''' print(name,url) if __name__ == '__main__': manage.run()
一個項目常常會安裝不少組件或者插件,都有不一樣的版本,怎麼才能知道這項目都用到了哪些模塊,什麼版本呢?
python有個模塊能夠很方便的幹這件事.
1. 安裝
pip install pipreqs
2. 檢查並生成一個requirements.txt
# 必須在程序的根目錄執行下面的命令 pipreqs ./
3. pipreqs 還能夠導入自動安裝尚未安裝的插件
4. pycharm自己也能夠自動檢查程序並提示你安裝尚未安裝的插件
研究一下:
fabric
ansible
saltstack