第五篇 Flask組件之SQLAchemy及Flask-SQLAlchemy插件/Flask-Script/Flask-migrate/pipreqs模塊

SQLAlchemy組件

一. 介紹

SQLAlchemy是一個基於Python實現的ORM框架。該框架創建在 DB API之上,使用關係對象映射進行數據庫操做,簡言之即是:將類和對象轉換成SQL,而後使用數據API執行SQL並獲取執行結果。html

# 安裝
pip3 install sqlalchemy

組成部分:python

  • Engine,框架的引擎
  • Connection Pooling ,數據庫鏈接池
  • Dialect,選擇鏈接數據庫的DB API種類(即選擇是用pymysql仍是mysqldb)
  • Schema/Types,架構和類型
  • SQL Exprression Language,SQL表達式語言

SQLAlchemy自己沒法操做數據庫,其必須以pymsql等第三方插件,Dialect用於和數據API進行交流,根據配置文件的不一樣調用不一樣的數據庫API,從而實現對數據庫的操做,如:mysql

下面這些連接是字符串:在Dialect裏
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html

要使用這些,必須先安裝對應的 mysqldb、pymysql、mysqlconnector、 cx_oracle

 二.基本使用(通常不按照該示例怎麼寫,只爲了說明)

1. 鏈接池sql

示例1:鏈接池始終只有一個連接數據庫

import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine

engine = create_engine(
    # 用pymysql連接mysql;
    # root:123   用戶名:密碼
    # 127.0.0.1:3006 數據庫ip及端口
    # t1:數據庫名
    # charset=utf8:編碼
    "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
    max_overflow=2,  # 超過鏈接池大小外最多建立的鏈接(即5個已經不夠用了,最多再能建立2個,也就是總共最多建立7個連接池)
    pool_size=5,  # 鏈接池大小,最多5個
    pool_timeout=30,  # 池中沒有線程最多等待的時間(秒),不然報錯
    pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
)

conn = engine.raw_connection()  # 去連接池拿一個連接
cursor = conn.cursor()  # 在連接裏拿個cursor,這裏其實已經執行了pymysql裏的功能了
# 執行sql語句
cursor.execute(
    "select * from t1"
)
result = cursor.fetchall()
cursor.close()
conn.close()
示例一

示例二:鏈接池有多個連接django

import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine

engine = create_engine(
    # 用pymysql連接mysql;
    # root:123   用戶名:密碼
    # 127.0.0.1:3006 數據庫ip及端口
    # t1:數據庫名
    # charset=utf8:編碼
    "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
    max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接(即5個已經不夠用了,最多再能建立2個,也就是總共最多建立7個連接池)
    pool_size=5,  # 鏈接池大小,最多5個
    pool_timeout=30,  # 池中沒有線程最多等待的時間(秒),不然報錯
    pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
)



def task(arg):
    conn = engine.raw_connection()  # 去連接池拿一個連接
    cursor = conn.cursor() # 在連接裏拿個cursor,這裏其實已經執行了pymysql裏的功能了
    # 執行sql語句
    cursor.execute(
        "select * from t1"
        "select sleep(2)"
    )
    result = cursor.fetchall()
    cursor.close()
    conn.close()

# 建立了20個線程
# 若是速度特別快,可能一個連接就夠了
# 若是速度特別慢,多是5個5個的執行的。
for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
示例二

2. ORMflask

a.定義數據庫表、建立表單、刪除表安全

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index

# 標準寫法:
Base = declarative_base()

# 1. 定義表名及表裏的字段,繼承Base
class Users(Base):
    __tablename__ = 'users'   # 生成的數據庫表名
    # 表裏的具體字段
    # id列,id是主鍵
    id = Column(Integer, primary_key=True)
    # name列,字符串類型(最大32個字符),index是索引,nullable:是否可爲空,Flase表示不可爲空
    name = Column(String(32), index=True, nullable=False)

# 2. 單純使用sqlAlchemy建立表
def init_db():
    """
    根據類建立數據庫表
    :return: 
    """
    # 連接數據庫
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接
        pool_size=5,  # 鏈接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,不然報錯
        pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
    )

    Base.metadata.create_all(engine)  # 讀取Base裏全部的表,在數據庫裏生成表

# 刪除表
def drop_db():
    """
    根據類刪除數據庫表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接
        pool_size=5,  # 鏈接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,不然報錯
        pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
    )

    Base.metadata.drop_all(engine)

# 3.修改表單純使用sqlalchemy作不到,須要用其餘組件才能夠。

if __name__ == '__main__':
    drop_db()
    init_db()
View Code

b.操做數據庫表- 增刪改查session

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from models import Users

# 建立連接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Connection = sessionmaker(bind=engine)

# 每次執行數據庫操做時,都須要建立一個Connection連接
conn = Connection()

# ############# 執行ORM操做-增長操做 #############
obj1 = Users(name="alex1")
conn.add(obj1)

# 提交事務
conn.commit()
# 關閉session
conn.close()
增長操做

三.具體(重點)

1. 定義單表架構

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index

Base = declarative_base()
# ##################### 單表示例 #########################

class Users(Base):
    __tablename__ = 'users'
    # 表裏的字段
    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)
    email = Column(String(32), unique=True)   # unique 表示惟一索引
    ctime = Column(DateTime, default=datetime.datetime.now)  # 建立時間:datetime.datetime.now,now後面不能加(),由於它是靜態字段
    extra = Column(Text, nullable=True)

    # 建立聯合惟一索引
    __table_args__ = (
    #     UniqueConstraint('id', 'name', name='uix_id_name'),  # id 和 name 作了聯合惟一
    #     Index('ix_id_name', 'name', 'email'),    # name 和 email 作了聯合索引
    )
   # 問題:
   # 1. 字符編碼怎麼指定?

2. 定義多表

# ##################### 一對多示例 #########################
class Hobby(Base):
    __tablename__ = 'hobby'
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default='籃球')


class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    hobby_id = Column(Integer, ForeignKey("hobby.id"))  # 經過表名.字段名關聯

    # 與生成表結構無關,僅用於查詢方便
    hobby = relationship("Hobby", backref='pers')
# ##################### 多對多示例 #########################

# 多對多關係表
class Server2Group(Base):
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 在這裏生成多對多關係的
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 與生成表結構無關,僅用於查詢方便
    servers = relationship('Server', secondary='server2group', backref='groups')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)

3. 執行生成並建立表

def init_db():
    """
    根據類建立數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接
        pool_size=5,  # 鏈接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,不然報錯
        pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
    )

    Base.metadata.create_all(engine)

if __name__ == '__main__':
    init_db()

4. 執行刪除表

def drop_db():
    """
    根據類刪除數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接
        pool_size=5,  # 鏈接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,不然報錯
        pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
    )

    Base.metadata.drop_all(engine)

if __name__ == '__main__':
    drop_db()

5. 操做表

 上面分別介紹了表的建立,下面對錶進行操做的詳細介紹

建立表通常只操做一次,因此放到 models.py文件裏

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship



Base = declarative_base()
# ##################### 單表示例 #########################

class Users(Base):
    __tablename__ = 'users'
    # 表裏的字段
    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)
    email = Column(String(32), unique=True)   # unique 表示惟一索引
    ctime = Column(DateTime, default=datetime.datetime.now)  # 建立時間:datetime.datetime.now,now後面不能加(),由於它是靜態字段
    extra = Column(Text, nullable=True)

    # 建立聯合惟一索引
    __table_args__ = (
        UniqueConstraint('id', 'name', name='uix_id_name'),  # id 和 name 作了聯合惟一
        Index('ix_id_name', 'name', 'email'),    # name 和 email 作了聯合索引
    )
   # 問題:
   # 1. 字符編碼怎麼指定?


# ##################### 一對多示例 #########################
class Hobby(Base):
    __tablename__ = 'hobby'
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default='籃球')


class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    hobby_id = Column(Integer, ForeignKey("hobby.id"))  # 經過表名.字段名關聯

    # 與生成表結構無關,僅用於查詢方便
    hobby = relationship("Hobby", backref='pers')


# ##################### 多對多示例 #########################

# 多對多關係表
class Server2Group(Base):
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 在這裏生成多對多關係的
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 與生成表結構無關,僅用於查詢方便
    servers = relationship('Server', secondary='server2group', backref='groups')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)

def init_db():
    """
    根據類建立數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接
        pool_size=5,  # 鏈接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,不然報錯
        pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
    )

    Base.metadata.create_all(engine)

if __name__ == '__main__':
    init_db()

def drop_db():
    """
    根據類刪除數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過鏈接池大小外最多建立的鏈接
        pool_size=5,  # 鏈接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,不然報錯
        pool_recycle=-1  # 多久以後對線程池中的線程進行一次鏈接的回收(重置)
    )

    Base.metadata.drop_all(engine)

if __name__ == '__main__':
    drop_db()
models

SQLAlchemy詳細介紹

1. SQLAlchemy之兩種鏈接方式:

  (1)第一種數據庫鏈接方式  sessionmaker

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
import models

# 1.建立鏈接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5)
Conn = sessionmaker(bind=engine)

# 2.從鏈接池中獲取數據庫鏈接
conn = Conn()

# ###############執行ORM操做#####################
# 3.執行ORM操做
obj1 = models.Users(name="alex1",email="alex1@xx.com")
conn.add(obj1)
conn.commit()

# 4.關閉數據庫鏈接(將鏈接放回鏈接池)
conn.close()

  (2)第二種數據庫鏈接方式  scoped_session  --- 推薦這種

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session # 第二種方式
import models

# 1.建立鏈接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5)
Conn = sessionmaker(bind=engine)

# 2.從鏈接池中獲取數據庫鏈接
conn = scoped_session(Conn)

# ###############執行ORM操做#####################
# 3.執行ORM操做
obj1 = models.Users(name="alex1",email="alex1@xx.com")
# 本質執行do函數:add
conn.add(obj1)

# 本質調用do函數:commit
conn.commit()

# 4.關閉數據庫鏈接(將鏈接放回鏈接池)
conn.close()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session
from models import Users

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

"""
# 線程安全,基於本地線程實現每一個線程用同一個session
# 特殊的:scoped_session中有原來方法的Session中的一下方法:

public_methods = (
    '__contains__', '__iter__', 'add', 'add_all', 'begin', 'begin_nested',
    'close', 'commit', 'connection', 'delete', 'execute', 'expire',
    'expire_all', 'expunge', 'expunge_all', 'flush', 'get_bind',
    'is_modified', 'bulk_save_objects', 'bulk_insert_mappings',
    'bulk_update_mappings',
    'merge', 'query', 'refresh', 'rollback',
    'scalar'
)
"""
session = scoped_session(Session)


# ############# 執行ORM操做 #############
obj1 = Users(name="alex1")
session.add(obj1)



# 提交事務
session.commit()
# 關閉session
session.close()
基於scoped_session實現線程安全--wpq

2. SQLAlchemy的基本操做-增刪改查(*****)

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
import models

# 1.建立鏈接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5)
Conn = sessionmaker(bind=engine)

# 2.從鏈接池中獲取數據庫鏈接
conn = Conn()

# ###############執行ORM操做#####################
# 3.執行ORM操做

############### 增長 #############
#  add 增單條增長
obj1 = models.Users(name="alex1",email="alex1@xx.com")   # 增長的時候先建立一個對象,而後放到add()或者add_all()
conn.add(obj1)
conn.commit()

# add_all():批量增長
conn.add_all([
    models.Users(name="alex2",email="alex2@xx.com"),
    models.Users(name="alex3",email="alex3@xx.com"),
    models.Users(name="alex4",email="alex4@xx.com")
])
conn.commit()

############### 查詢 #############
# 查的表:models.Users;
user_list = conn.query(models.Users).all()   # all()查出全部的內容了
for row in user_list:
    print(row.id)
    print(row.name)
    print(row.email)
    print(row.ctime)
conn.commit()

""" 其餘查詢,下面的Users前面都省略了models.,用的時候加上
r1 = conn.query(Users).all()
r2 = conn.query(Users.name.label('xx'), Users.age).all()   # label('xx') 至關於取了個別名
r3 = conn.query(Users).filter(Users.name == "alex").all()  # filter裏傳的是表達式
r4 = conn.query(Users).filter_by(name='alex').all()       # filter_by 裏面傳的是參數
r5 = conn.query(Users).filter_by(name='alex').first()    # first,第一個對象

# 構造複雜點的sql
# text("id<:value and name=:name"):意識是id<x,name=y,後面的params是具體的參數;order_by:是排序
r6 = conn.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()

# 構造更復雜點的sql
r7 = conn.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
"""

# 查詢出id > 2的數據
user_list = conn.query(models.Users).filter(models.Users.id > 2)
conn.commit()
############### 刪除 #############
conn.query(models.Users).filter(models.Users.id > 2).delete()
conn.commit()


############### 更改 #############
# 改的時候,update傳的是字典
conn.query(models.Users).filter(models.Users.id == 1).update({"name":"eric"})
# 字符串相加,後面要寫synchronize_session = False
conn.query(models.Users).filter(models.Users.id > 0).update({models.Users.name:models.Users.name + "999"}, synchronize_session = False)

# 若是是數字相加,要加上synchronize_session = "evaluate"
conn.query(models.Users).filter(models.Users.id > 0).update({models.Users.age:models.Users.age + 1}, synchronize_session = "evaluate")
conn.commit()


# 4.關閉數據庫鏈接(將鏈接放回鏈接池)
conn.close()
基本增刪改查示例1
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text

from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# ################ 添加 ################
"""
obj1 = Users(name="wupeiqi")
session.add(obj1)

session.add_all([
    Users(name="wupeiqi"),
    Users(name="alex"),
    Hosts(name="c1.com"),
])
session.commit()
"""

# ################ 刪除 ################
"""
session.query(Users).filter(Users.id > 2).delete()
session.commit()
"""
# ################ 修改 ################
"""
session.query(Users).filter(Users.id > 0).update({"name" : "099"})
session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")
session.commit()
"""
# ################ 查詢 ################
"""
r1 = session.query(Users).all()
r2 = session.query(Users.name.label('xx'), Users.age).all()
r3 = session.query(Users).filter(Users.name == "alex").all()
r4 = session.query(Users).filter_by(name='alex').all()
r5 = session.query(Users).filter_by(name='alex').first()
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()
r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
"""


session.close()

基本增刪改查示例
基本增刪改查示例2-wpq

3. SQLAlchemy的經常使用操做(*****)

分組、分頁、模糊查詢等

########### 條件 ########### # filter與filter_by的區別:filter裏傳參數,filter_by裏傳表達式
ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()  # ,表示 and
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()   # in_ 固定搭配
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()  # ~ 表示非 除了她之外
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 嵌套

# 導入 and_ 和 or_
from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()  # 表示or_裏的兩個都是or的關係 # 能夠嵌套
ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "" )).all() ############ 通配符 ###########
ret = session.query(Users).filter(Users.name.like('e%')).all()  # 以e開頭,%表明全部字符
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 不以e開頭,%表明全部字符

############ 限制 ############
ret = session.query(Users)[1:2] ########### 排序 ##############
ret = session.query(Users).order_by(Users.name.desc()).all()  # 根據name按照從大到小排序
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 寫多個,優先按照name從大到小排序,若有重名,再按id從小到大排

############## 分組 ###############
from sqlalchemy.sql import func  # 導入聚合函數
 ret = session.query(Users).group_by(Users.extra).all()  # 根據extra分組
ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() ############# 連表 ##############
 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all()  # inner join 和 left join的區別? join(Favor).all()是一個總體

# 表裏有外鍵,才能夠這麼連表
ret = session.query(Person).join(Favor, isouter=True).all()  # left join Person left join Favor # 若是沒有外鍵,能夠寫參數

''' .all():表示取值 若是想看sql語句是什麼,就先去掉.all() ret = session.query(Person).join(Favor, isouter=True) print(ret) 獲得的就是 sql 語句 '''


############# 組合 ############ # union 和 union_all
q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
經常使用操做

4.SqlAlchemy也支持原生sql(重點也支持原生sql)

上面是orm裏的sql操做,若是還有更復雜的sql,就能夠寫原生sql

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# 查詢
# cursor = session.execute('select * from users')
# result = cursor.fetchall()

# 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid)

session.close()
原生sql

5.SQLAlchemy之一對多relationship(****)

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship

Base = declarative_base()


class Hobby(Base):
    __tablename__ = "hobby"
    id = Column(Integer,primary_key=True)
    caption = Column(String(50),default="籃球")


class Person(Base):
    __tablename__ = "person"
    nid = Column(Integer,primary_key=True)
    name = Column(String(32),index=True, nullable=True)
    hobby_id = Column(Integer,ForeignKey('hobby.id'))
    # relationship與數據庫不要緊,不會再數據庫裏生成這個字段的。關聯的是Hobby表,做用是快速幫你作連表操做
    hobby = relationship("Hobby", backref = 'pers')  # backref 表示能夠反向關聯
models.py
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy


# 1.建立鏈接池
engine = create_engine(
    "mysql+pymysql://root@127.0.0.1:3306/s7?charset=utf-8",
    max_overflow = 0,
    pool_sise =5
    )
Session = sessionmaker(bind=engine)

# 2. 從鏈接池中獲取數據庫鏈接
session = Session()

# 3. 執行ORM操做

# 先分別給兩張表裏新增數據
# 給hobby裏新增數據
session.add_all([
    models.Hobby(caption='姑娘'),
    models.Hobby(caption='足球'),
])
session.commit()

# 給person表裏新增人
session.add_all([
    models.Person(name='李志',id = 2),
    models.Person(name='龍龍',id = 1),
    models.Person(name='大龍',id = 3),
])
session.commit()

# 查全部的用戶表person表
person_list = session.query(models.Person).all()
for row in person_list:
    print(row.name, row.hobby_id)

# 需求:把hobby_id對應的中文名字所有拿出來--連表操做   喜歡足球的全部人
# 方式一
person_list = session.query(models.Person.name, models.Hobby.caption).join(models.Hobby, isouter=True).all()
for row in person_list:
    print(row.name, row.hobby_id, row.caption)

# 方式二:經過加relationship自動,進行自動連表查詢
# 正向關聯
person_list = session.query(models.Person).all()
for row in person_list:
    print(row.name, row.hobby.caption)

# 或:也能夠進行反向關聯   喜歡姑娘的全部人
obj = session.query(models.Hobby).filter(models.Hobby.id == 1).first()
persons = obj.pers
print(persons)


# releationship也能夠作增長
hb = models.Hobby(caption = "人妖")
hb.pers = [models.Person(name = "liuwu"),models.Person=(name = "liz")]
session.add(hb)
session.commit()

#
obj = models.Person(name = "lili", hobby = models.Hobby(caption = "人妖2"))
session.add(obj)
session.commit()


# 4. 關閉數據庫鏈接(將鏈接放回鏈接池)
relationship一對多;基於relationship操做foreignKey
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Hobby(caption='乒乓球'),
    Hobby(caption='羽毛球'),
    Person(name='張三', hobby_id=3),
    Person(name='李四', hobby_id=4),
])

person = Person(name='張九', hobby=Hobby(caption='姑娘'))
session.add(person)

hb = Hobby(caption='人妖')
hb.pers = [Person(name='文飛'), Person(name='博雅')]
session.add(hb)

session.commit()
"""

# 使用relationship正向查詢
"""
v = session.query(Person).first()
print(v.name)
print(v.hobby.caption)
"""

# 使用relationship反向查詢
"""
v = session.query(Hobby).first()
print(v.caption)
print(v.pers)
"""

session.close()

基於relationship操做ForeignKey
基於relationship操做ForeignKey-wpq

6.SQLAlchemy之多對多relationship

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship


Base = declarative_base()

# 多對多關係表
class Server2Group(Base):
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 在這裏生成多對多關係的
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 與生成表結構無關,僅用於查詢方便
    servers = relationship('Server', secondary='server2group', backref='groups')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
models.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Server(hostname='c1.com'),
    Server(hostname='c2.com'),
    Group(name='A組'),
    Group(name='B組'),
])
session.commit()

s2g = Server2Group(server_id=1, group_id=1)
session.add(s2g)
session.commit()


gp = Group(name='C組')
gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')]
session.add(gp)
session.commit()


ser = Server(hostname='c6.com')
ser.groups = [Group(name='F組'),Group(name='G組')]
session.add(ser)
session.commit()
"""


# 使用relationship正向查詢
"""
v = session.query(Group).first()
print(v.name)
print(v.servers)
"""

# 使用relationship反向查詢
"""
v = session.query(Server).first()
print(v.hostname)
print(v.groups)
"""


session.close()
基於relationship操做多對多-wpq

 7.其餘

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text, func
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()

# 關聯子查詢
subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
result = session.query(Group.name, subqry)
"""
SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid 
FROM server 
WHERE server.id = `group`.id) AS anon_1 
FROM `group`
"""
# (SELECT count(server.id) 只能一個值


# 原生SQL
"""
# 查詢
cursor = session.execute('select * from users')
result = cursor.fetchall()

# 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid)
"""

session.close()

其餘
關聯子查詢 

Flask-SQLAlchemy插件

就是Flask和SQLALchemy的管理者,讓flask和sqlAlchemy無縫鏈接起來

本質上仍是目錄和文件的管理

因此目錄結構要保存好。

文件見:連接:https://pan.baidu.com/s/1aOaeCGCEPkTQnLe27Sdnow  密碼:gzsq  

Flask-Migrate組件

SqlAlchemy自己不支持更改表結構,因此須要藉助Flask-Migrate第三方組件操做

做用:flask-migrate用於實現相似Django數據庫遷移:makemigrations/migrate ->migrate/upgrade

# 安裝
pip install flask-migrate
from flask_script import Manager
from flask import Flask
from sansa import create_app, db

# 數據庫遷移須要配置的項
# 第一:導入
from flask_migrate import Migrate, MigrateCommand

app = create_app()
manage = Manager(app)
# 第二
migrate = Migrate(app, db)

# 第三
manage.add_command('db', MigrateCommand)

'''
配置好上面三項,就能夠在cmd裏執行下面的命令遷移數據庫了
數據庫遷移命令:
    python manage.py db init
    python manage.py db migrate
    python manage.py db upgrade

'''

if __name__ == '__main__':
    manage.run()

Flask-script組件

做用:用於實現相似 django python manage.py runserver...這樣的腳本

# 安裝
pip install flask-script
# 使用

from flask_script import Manager  # 導入 Manage
from flask import Flask

app = Flask(__name__)
manage = Manager(app)   # 實例化manage

app.route("/")
def index():
    return "hello flask-script"


if __name__ == '__main__':
    manage.run()

先右鍵run起來程序,而後就能夠在命令行裏經過命令運行了

# 經過命令運行
python manage.py runserver
from flask_script import Manager
from flask import Flask

# 相似位置參數方式
@manage.command()
def custom(arg):
    '''
    自定義命令
    執行: python manage.py custom 123     ( 123 是傳入的參數 )
    custom 表示要執行這個函數
    :param arg:
    :return:
    '''
    # 能夠把離線腳本放入這裏
    from sansa import create_app
    from sansa import db
    app = create_app()
    with app.app_context():
        db.create_all()


# 相似關鍵字參數方式
@manage.option('-n', '--name', dest = 'name')
@manage.option('-u','--url',dest = 'url')    
def cmd(name,url):
    '''
    自定義命令
    執行: python manage.py cmd - n mamingchen -u http://www.baidu.com
    - n ,-u: 都表示要傳參數了
    :param name:
    :param url:
    :return:
    '''
    print(name,url)

if __name__ == '__main__':
    manage.run()

 

 

Flask-RESTful組件

 

pipreqs模塊

一個項目常常會安裝不少組件或者插件,都有不一樣的版本,怎麼才能知道這項目都用到了哪些模塊,什麼版本呢?

python有個模塊能夠很方便的幹這件事.

1. 安裝

pip install pipreqs

2. 檢查並生成一個requirements.txt

# 必須在程序的根目錄執行下面的命令

pipreqs ./

3. pipreqs 還能夠導入自動安裝尚未安裝的插件

4. pycharm自己也能夠自動檢查程序並提示你安裝尚未安裝的插件

 

研究一下:

fabric

ansible

saltstack

相關文章
相關標籤/搜索