Datawhale 零基礎入門CV賽事學習筆記--第4次打卡 模型訓練與驗證

1、構造驗證集 在機器學習模型(特別是深度學習模型)的訓練過程中,模型是非常容易過擬合的。深度學習模型在不斷的訓練過程中訓練誤差會逐漸降低,但測試誤差的走勢則不一定。 在模型的訓練過程中,模型只能利用訓練數據來進行訓練,模型並不能接觸到測試集上的樣本。因此模型如果將訓練集學的過好,模型就會記住訓練樣本的細節,導致模型在測試集的泛化效果較差,這種現象稱爲過擬合(Overfitting)。與過擬合相對
相關文章
相關標籤/搜索