開始一個數據分析項目,首先須要作的就是get到原始數據,得到原始數據的方法有多種途徑。好比:html
本次福布斯系列數據分析項目實戰,數據採集方面,主要數據來源於使用爬蟲進行數據採集,同時也輔助其餘數據進行對比。python
本文主要是介紹使用爬蟲進行數據採集的思路和步驟。c++
本次採集的福布斯全球上市企業2000強排行榜數據,涉及年份從2007年到2017年,跨越10多年。微信
本次採集的目標網站,是多個網頁,但多個網頁的分佈結構都有所不一樣,雖然思路和步驟都差很少,但須要分開來編寫,分別採集。markdown
數據採集大致分爲幾步:app
涉及到的python庫包括,requests、BeautifulSoup以及csv。 下面以採集某年的數據爲案例,來描述下數據採集的步驟。函數
import requests
from bs4 import BeautifulSoup
import csv
主要是基於 requests,代碼以下:網站
def download(url):
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36'}
response = requests.get(url,headers=headers)
# print(response.status_code)
return response.text
這個模塊會在主網頁數據下載,以及各個分頁面數據下載時使用,是一個比較通用的模塊。ui
主網頁的頁面結構,主要分爲兩個部分,一類是包含其餘頁面數據的網頁連接,一類是主網頁上的公司數據列表,以表格形式在網頁上顯示。lua
用BeautifulSoup能夠把這些數據解析出來。 代碼模塊以下:
def get_content_first_page(html, year):
''' 獲取排名在1-100的公司列表,且包含表頭 '''
soup = BeautifulSoup(html, 'lxml')
body = soup.body
body_content = body.find('div', {'id': 'bodyContent'})
tables = body_content.find_all('table', {'class': 'XXXXtable'})
# tables一共有3個,最後一個纔是咱們想要的
trs = tables[-1].find_all('tr')
# 獲取表頭名稱
# trs[1], 這裏跟其餘年份不同
row_title = [item.text.strip() for item in trs[1].find_all('th')]
row_title.insert(0, '年份')
rank_list = []
rank_list.append(row_title)
for i, tr in enumerate(trs):
if i == 0 or i == 1:
continue
tds = tr.find_all('td')
# 獲取公司排名及列表
row = [ item.text.strip() for item in tds]
row.insert(0, year)
rank_list.append(row)
return rank_list
def get_page_urls(html):
''' 獲取排名在101-2000的公司的網頁連接 '''
soup = BeautifulSoup(html, 'lxml')
body = soup.body
body_content = body.find('div', {'id': 'bodyContent'})
label_div = body_content.find('div', {'align':'center'})
label_a = label_div.find('p').find('b').find_all('a')
page_urls = ['basic_url' + item.get('href') for item in label_a]
return page_urls
步驟也是 網頁頁面下載 和表格類數據爬取。 代碼內容跟主網頁頁面相似,只是細節上有些差別,這裏就不做贅述了。
採集的數據,最後保存到csv文件中。模塊代碼以下:
def save_data_to_csv_file(data, file_name):
''' 保存數據到csv文件中 '''
with open(file_name, 'a', errors='ignore', newline='') as f:
f_csv = csv.writer(f)
f_csv.writerows(data)
def get_forbes_global_year_2007(year=2007):
url = 'url'
html = download(url)
# print(html)
data_first_page = get_content_first_page(html, year)
# print(data_first_page)
save_data_to_csv_file(data_first_page, 'forbes_'+str(year)+'.csv')
page_urls = get_page_urls(html)
# print(page_urls)
for url in page_urls:
html = download(url)
data_other_page = get_content_other_page(html, year)
# print(data_other_page)
print('saving data ...', url)
save_data_to_csv_file(data_other_page, 'forbes_'+str(year)+'.csv')
if __name__ == '__main__':
# get data from Forbes Global 2000 in Year 2009
get_forbes_global_year_2007()
本文只介紹了數據採集的思路與各個模塊,並無提供目標網頁的連接, 一方面因爲原始網頁的數據信息比較雜亂,採集的時候須要寫多個採集程序,另一方面,因爲咱們的重點在於後續的數據分析部分,但願不要着重於數據爬取。
在後續的分析過程當中,咱們會來查看數據的結構、數據完整性及相關信息,歡迎關注微信公衆號(ID:PyDataRoad)。
本期推薦閱讀: