JVM源碼分析-類加載場景實例分析

A類調用B類的靜態方法,除了加載B類,可是B類的一個未被調用的方法間接使用到的C類卻也被加載了,這個有意思的場景來自一個提問:方法中使用的類型爲什麼在未調用時嘗試加載?java

場景以下:linux

public class Main {
    static {
        System.out.println("Main static block");
    }

    public static void main(String[] args) {
        Helper.staticMethod();
    }
}

public class Helper {
    static {
        System.out.println("Helper static block");
    }

    public static void staticMethod() {
        System.out.println("Helper#staticMethod");
    }

    public void test(XXXManager ab, XXXSubInterface xxxSubInterface) {
        ab.setXXX(xxxSubInterface);
    }
}

public interface XXX {}

public interface XXXSubInterface extends XXX {}

public interface XXXManager {
    void setXXX(XXX xxx);
}

添加JVM -varbose參數進行執行,輸出是:c++

[Loaded Main from file:/Users/mazhibin/project/java/loadclasstest/target/classes/]
Main static block
[Loaded Helper from file:/Users/mazhibin/project/java/loadclasstest/target/classes/]
[Loaded XXX from file:/Users/mazhibin/project/java/loadclasstest/target/classes/]
Helper static block
Helper#staticMethod

main方法執行Helper.staticMethod(),而staticMethod方法裏面只有打印語句,因此理論上應該只要加載Helper就夠了,爲了什麼會加載到XXX類,好,即便接受能夠加載類的狀況,爲何是XXX,而不是直接使用到的XXXManager或者XXXSubInterface。你提的問題大概是這個場景。segmentfault

在說探索過程以前先說下最終結論:在驗證Helper類時,校驗到setXXX方法,會驗證XXXSubInterface類型是否能夠賦值到XXX類型,這個時候就會去加載XXX類,而後由於XXX是一個接口,代碼中認爲接口和Object類是同樣的,什麼類型均可以賦值給接口類型,因此就直接校驗成功,就沒有去加載XXXSubInterface類了。dom

而後在介紹一下類加載的過程。首先要清楚一點,「類加載」和「加載」是兩個概念,「加載」是「類加載」(Class Loading)的一個步驟。類加載包含加載、連接、初始化這三個步驟,其中連接又分爲驗證、準備、解析這三個子步驟。加載是根據特定名稱查找類或接口類型的二進制表示(Binary Representation),並由此二進制表示建立類或接口的過程。連接是爲了讓類或接口能夠被 Java 虛擬機執行,而將類或接口併入虛擬機運行時狀態的過程。類或接口的初始化是指執行類或接口的初始化方法<clinit>jvm

file

類加載複雜就複雜在這些步驟執行的時機,而且其中的子步驟還不必定按順序執行,加載、驗證、準備、初始化和卸載這5個階段的順序是固定的,須要按這個順序開始(容許交叉),而解析則不必定,有可能在初始化以後才進行。函數

那何時會開始加載步驟?Java虛擬機規範沒有強制要求,可是對於初始化階段,則明確規定了5種狀況須要對類進行初始化,分別是:oop

  1. 在執行下列須要引用類或接口的Java虛擬機指令時:new,getstatic,putstatic或invokestatic。這些指令經過字段或方法引用來直接或間接地引用其它類。執行上面所述的new指令,在類或接口沒有被初始化過期就初始化它。執行上面的getstatic,putstatic或invokestatic指令時,那些解析好的字段或方法中的類或接口若是尚未被初始化那就初始化它。
  2. 在初次調用java.lang.invoke.MethodHandle實例時,它的執行結果爲經過Java虛擬機解析出類型是2(REF_getStatic)、4(REF_putStatic)或者6(REF_invokeStatic)的方法句柄(§5.4.3.5)。
  3. 在調用JDK核心類庫中的反射方法時,例如,Class類或java.lang.reflect包。
  4. 在對於類的某個子類的初始化時。
  5. 在它被選定爲Java虛擬機啓動時的初始類(§5.2)時。

結合上面說的,加載、驗證、準備、初始化和卸載這5個階段的順序是固定的,須要按這個順序開始(容許交叉),咱們肯定了初始化的時機,那麼在初始化時或者以前,就要開始加載了。同時還有一點,也就是這個問題涉及到的場景,一個類在驗證這個步驟時,會驗證A類的字節碼,其中可能會涉及到因此來的其餘類,根據驗證的具體需求,可能須要加載其餘類。而這個問題具體的校驗過程就是一個方法調用,涉及到類型轉換賦值(傳入子接口類型,須要轉爲父接口類型),這種狀況下須要加載類型來判斷是否能夠進行賦值,按理是須要加載賦值左右兩邊的類型的,可是由於左邊類型是接口,被認爲均可以賦值,因此沒有加載右邊類型。源碼分析

總結來講可能的加載時機爲如下幾點(不必定全面,是我目前已知的):ui

  1. JVM啓動時會預加載一些核心類,好比Object、String等
  2. 這個類被第一次真正使用到時,好比主類由於要調用其main方法,天然須要被加載
  3. 在A類校驗階段,可能須要加載其代碼中使用到的B類
  4. 在A類進行某個符號引用的解析時,須要加載對應的B類。好比正在執行A類的一個方法,執行到B.func(),那就須要解析B和func符號引用爲直接引用,那天然須要加載B類到方法區中

接下來講下是如何獲得上述結論的,首先類加載的流程是Java虛擬機規範中有寫的,能夠看看。而具體爲何只加載了XXX類,則要調試JVM源碼才能知道了。最近由於有看JVM源碼,因此編譯了並能夠進行GDB調試,而後添加條件斷點:break SystemDictionary::load_instance_class if strncmp(class_name._body, "XXX", 3) == 0,表示在加載XXX類的時候停下來,接着分析調用堆棧:

// 加載Main類
[Loaded Main from file:/root/jvm/openjdk/build/linux-amd64-debug/hotspot/outputdir/linux_amd64_compiler2/jvmg/mzb/]

// 執行Main的初始化方法
Main static block

// 由於要執行Helper.staticMethod()語句,觸發加載Helper流程
[Loaded Helper from file:/root/jvm/openjdk/build/linux-amd64-debug/hotspot/outputdir/linux_amd64_compiler2/jvmg/mzb/]

// 接着斷點停在了加載XXX接口的函數調用上
Breakpoint 1, SystemDictionary::load_instance_class (class_name=0x7ffff01a5338, class_loader=..., __the_thread__=
    0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:1345
1345    instanceKlassHandle nh = instanceKlassHandle(); // null Handle

// 查看函數調用棧,分析爲何會須要加載XXX類(要從下往上看)
(gdb) bt
#0  SystemDictionary::load_instance_class (class_name=0x7ffff01a5338, class_loader=...,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:1345
#1  0x00007ffff7578062 in SystemDictionary::resolve_instance_class_or_null (name=0x7ffff01a5338,
    class_loader=..., protection_domain=..., __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:755
#2  0x00007ffff7576a17 in SystemDictionary::resolve_or_null (class_name=0x7ffff01a5338, class_loader=...,
    protection_domain=..., __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:203
#3  0x00007ffff75765ad in SystemDictionary::resolve_or_fail (class_name=0x7ffff01a5338, class_loader=...,
    protection_domain=..., throw_error=true, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:145
// 上面就開始了加載流程了

// 下文分析了這裏是在校驗XXXSubInterface類型是否能夠賦值到XXX
// 下文分析了爲何須要加載XXX接口,而不須要加載XXXSubInterface接口
#4  0x00007ffff75df854 in VerificationType::is_reference_assignable_from (this=0x7ffff7fe5770, from=..., context=
    0x7ffff7fe60e0, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verificationType.cpp:62
#5  0x00007ffff753bc37 in VerificationType::is_assignable_from (this=0x7ffff7fe5770, from=...,
    context=0x7ffff7fe60e0, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verificationType.hpp:289
#6  0x00007ffff75eba80 in StackMapFrame::pop_stack (this=0x7ffff7fe5e20, type=..., __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/stackMapFrame.hpp:181
#7  0x00007ffff75ea155 in ClassVerifier::verify_invoke_instructions (this=0x7ffff7fe60e0, bcs=0x7ffff7fe5dc0,
    code_length=18, current_frame=0x7ffff7fe5e20, this_uninit=0x7ffff7fe5f1f, return_type=..., cp=...,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verifier.cpp:2064

// 下文分析了這裏是由於驗證Helper.test(LXXXManager;)V這個方法致使的加載XXX接口
#8  0x00007ffff75e64ea in ClassVerifier::verify_method (this=0x7ffff7fe60e0, m=...,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verifier.cpp:1237
#9  0x00007ffff75e0e75 in ClassVerifier::verify_class (this=0x7ffff7fe60e0, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verifier.cpp:312
#10 0x00007ffff75e04b1 in Verifier::verify (klass=..., mode=Verifier::ThrowException, should_verify_class=true,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verifier.cpp:127
#11 0x00007ffff71f5d8c in instanceKlass::verify_code (this_oop=..., throw_verifyerror=true,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/oops/instanceKlass.cpp:214
// 上面的方法是驗證的過程,也就是校驗字節碼是否正確,是否合法

#12 0x00007ffff71f6425 in instanceKlass::link_class_impl (this_oop=..., throw_verifyerror=true,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/oops/instanceKlass.cpp:321
#13 0x00007ffff71f5e73 in instanceKlass::link_class (this=0xfb01ab80, __the_thread__=0x7ffff0028000)

// 在類或接口被初始化以前,它必須被連接過,也就是通過驗證、準備階段,且有可能已經被解析完成了。因此上面是連接的流程
    at /root/jvm/openjdk/hotspot/src/share/vm/oops/instanceKlass.cpp:230
#14 0x00007ffff71f691f in instanceKlass::initialize_impl (this_oop=..., __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/oops/instanceKlass.cpp:397
#15 0x00007ffff71f5cca in instanceKlass::initialize (this=0xfb01ab80, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/oops/instanceKlass.cpp:199
#16 0x00007ffff7383903 in LinkResolver::resolve_static_call (result=..., resolved_klass=...,
    method_name=0x7ffff01a4908, method_signature=0x7ffff0051f28, current_klass=..., check_access=true,
    initialize_class=true, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:629

// Main類在運行字節碼時,執行到invokestatic指令,對應的語句是Helper.staticMethod()
// JVM規範中說明,在執行new,getstatic,putstatic或invokestatic這些指令時,須要確保目標類已經進行初始化流程
// 而初始化流程須要確保目標類已經被加載、驗證、準備,因此上面會走到Helper的加載、驗證、準備的流程
// 這個堆棧跟蹤到的是驗證的流程
#17 0x00007ffff738599f in LinkResolver::resolve_invokestatic (result=..., pool=..., index=65537,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:1077
#18 0x00007ffff738575c in LinkResolver::resolve_invoke (result=..., recv=..., pool=..., index=65537,
    byte=Bytecodes::_invokestatic, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:1050
#19 0x00007ffff7239c58 in InterpreterRuntime::resolve_invoke (thread=0x7ffff0028000,
    bytecode=Bytecodes::_invokestatic)
    at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/interpreterRuntime.cpp:686

// 咱們到第16號棧幀中,能夠看出的確是正要執行Helper.staticMethod()方法
(gdb) f 16
#16 0x00007ffff7383903 in LinkResolver::resolve_static_call (result=..., resolved_klass=...,
    method_name=0x7ffff01a4908, method_signature=0x7ffff0051f28, current_klass=..., check_access=true,
    initialize_class=true, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:629
629       resolved_klass->initialize(CHECK);
(gdb) p Klass::cast(current_klass.obj())->external_name()
$1 = 0x7fffcc002548 "Main"
(gdb) p *method_name._body@method_name._length
$5 = "staticMethod"

// 咱們到第8號棧幀中,能夠看出是由於驗證Helper.test(LXXXManager;)V這個方法致使的加載XXX接口
(gdb) f 8
#8  0x00007ffff75e64ea in ClassVerifier::verify_method (this=0x7ffff7fe60e0, m=...,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verifier.cpp:1237
1237                &this_uninit, return_type, cp, CHECK_VERIFY(this));
(gdb) p m->name_and_sig_as_C_string()
$6 = 0x7fffcc002568 "Helper.test(LXXXManager;)V"

// 咱們到第4號棧幀中,能夠看出是在校驗XXXSubInterface類型是否能夠賦值到XXX
(gdb) f 4
#4  0x00007ffff75df854 in VerificationType::is_reference_assignable_from (this=0x7ffff7fe5770, from=...,
    context=0x7ffff7fe60e0, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/verificationType.cpp:62
62          Handle(THREAD, klass->protection_domain()), true, CHECK_false);
(gdb) p *from.name()._body@from.name()._length
$10 = "XXXSubInterface"
(gdb) p *name()._body@name()._length
$11 = "XXX"

上面分析出了加載是由於驗證的流程,具體觸發加載的驗證代碼以下,是驗證賦值操做是否能夠成功的:

// hotspot/src/share/vm/classfile/verificationType.cpp
bool VerificationType::is_reference_assignable_from(
    const VerificationType& from, ClassVerifier* context, TRAPS) const {
  instanceKlassHandle klass = context->current_class();
  if (from.is_null()) {
    // null is assignable to any reference
    return true;
  } else if (is_null()) {
    return false;
  } else if (name() == from.name()) {
    return true;
  } else if (is_object()) {
    // 若是賦值語句左邊類型是對象,判斷是不是Object,若是是那均可以賦值成功,返回true
    // We need check the class hierarchy to check assignability
    if (name() == vmSymbols::java_lang_Object()) {
      // any object or array is assignable to java.lang.Object
      return true;
    }

    // 不然須要把左邊類型加載進來 <=========================== 加載行爲發生在這裏
    klassOop obj = SystemDictionary::resolve_or_fail(
        name(), Handle(THREAD, klass->class_loader()),
        Handle(THREAD, klass->protection_domain()), true, CHECK_false);
    KlassHandle this_class(THREAD, obj);

    // 若是左邊類型是接口
    if (this_class->is_interface()) {
      // 這裏註釋說明了,認爲接口和Object同樣,均可以賦值成功因此返回true
      // We treat interfaces as java.lang.Object, including
      // java.lang.Cloneable and java.io.Serializable
      return true;
    } else if (from.is_object()) {
      // 不然要把賦值賦予右邊的類型也加載進來
      klassOop from_class = SystemDictionary::resolve_or_fail(
          from.name(), Handle(THREAD, klass->class_loader()),
          Handle(THREAD, klass->protection_domain()), true, CHECK_false);
      return instanceKlass::cast(from_class)->is_subclass_of(this_class());
    }
  } else if (is_array() && from.is_array()) {
    VerificationType comp_this = get_component(context, CHECK_false);
    VerificationType comp_from = from.get_component(context, CHECK_false);
    if (!comp_this.is_bogus() && !comp_from.is_bogus()) {
      return comp_this.is_assignable_from(comp_from, context, CHECK_false);
    }
  }
  return false;
}

這樣就分析完了,嘗試把XXX和XXXSubInterface改爲class,能夠發現兩個都會被加載,符合上面這個代碼的邏輯。

接着順便分析一下Helper類加載的堆棧:

// 加載Main類
[Loaded Main from file:/root/jvm/openjdk/build/linux-amd64-debug/hotspot/outputdir/linux_amd64_compiler2/jvmg/mzb/]

// 執行Main初始化方法
Main static block

// 斷點停在加載Helper類的邏輯上
Breakpoint 2, SystemDictionary::load_instance_class (class_name=0x7ffff01a60d8, class_loader=..., __the_thread__=
    0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:1345
1345      instanceKlassHandle nh = instanceKlassHandle(); // null Handle
(gdb) bt
#0  SystemDictionary::load_instance_class (class_name=0x7ffff01a60d8, class_loader=...,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:1345
#1  0x00007ffff7578062 in SystemDictionary::resolve_instance_class_or_null (name=0x7ffff01a60d8,
    class_loader=..., protection_domain=..., __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:755
#2  0x00007ffff7576a17 in SystemDictionary::resolve_or_null (class_name=0x7ffff01a60d8, class_loader=...,
    protection_domain=..., __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:203
#3  0x00007ffff75765ad in SystemDictionary::resolve_or_fail (class_name=0x7ffff01a60d8, class_loader=...,
    protection_domain=..., throw_error=true, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/classfile/systemDictionary.cpp:145
#4  0x00007ffff70c1915 in constantPoolOopDesc::klass_at_impl (this_oop=..., which=18,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/oops/constantPoolOop.cpp:102
#5  0x00007ffff6fa1f69 in constantPoolOopDesc::klass_at (this=0xfb019e90, which=18,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/oops/constantPoolOop.hpp:366
#6  0x00007ffff70c2c84 in constantPoolOopDesc::klass_ref_at (this=0xfb019e90, which=65537,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/oops/constantPoolOop.cpp:382
#7  0x00007ffff73817c0 in LinkResolver::resolve_klass (result=..., pool=..., index=65537,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:161
#8  0x00007ffff7385871 in LinkResolver::resolve_pool (resolved_klass=..., method_name=@0x7ffff7fe6638: 0x0,
    method_signature=@0x7ffff7fe6630: 0x0, current_klass=..., pool=..., index=65537,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:1062

// Main類在運行字節碼時,執行到invokestatic指令,對應的語句是Helper.staticMethod()
// JVM規範中說明,指令anewarray、checkcast、getfield、getstatic、instanceof、nvokedynamic、invokeinterface、invokespecial、invokestatic、invokevirtual、ldc、ldc_w、multianewarray、new、putfield和putstatic將符號引用指向運行時常量池,執行上述任何一條指令都須要對它的符號引用的進行解析。
// 因此這裏須要將Main中的運行時常量池中的Helper和staticMethod進行符號解析
// 符號解析是把符號引用替換爲真實引用,天然須要加載Helper類,才能進行替換,因此上面就觸發了Helper的加載流程
#9  0x00007ffff738595b in LinkResolver::resolve_invokestatic (result=..., pool=..., index=65537,
    __the_thread__=0x7ffff0028000) at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:1076
#10 0x00007ffff738575c in LinkResolver::resolve_invoke (result=..., recv=..., pool=..., index=65537,
    byte=Bytecodes::_invokestatic, __the_thread__=0x7ffff0028000)
    at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/linkResolver.cpp:1050
#11 0x00007ffff7239c58 in InterpreterRuntime::resolve_invoke (thread=0x7ffff0028000,
---Type <return> to continue, or q <return> to quit---
    bytecode=Bytecodes::_invokestatic)
    at /root/jvm/openjdk/hotspot/src/share/vm/interpreter/interpreterRuntime.cpp:686
// hotspot/src/share/vm/interpreter/linkResolver.cpp
void LinkResolver::resolve_invokestatic(CallInfo& result, constantPoolHandle pool, int index, TRAPS) {
  KlassHandle  resolved_klass;
  Symbol* method_name = NULL;
  Symbol* method_signature = NULL;
  KlassHandle  current_klass;
  // 解析常量池中的符號引用,會觸發加載被調用類的流程 <==================
  resolve_pool(resolved_klass, method_name,  method_signature, current_klass, pool, index, CHECK);
  // 解析從方法簽名解析出方法oop,會觸發類的初始化流程 <==================
  resolve_static_call(result, resolved_klass, method_name, method_signature, current_klass, true, true, CHECK);
}

總結

總結來講可能的加載時機爲如下幾點(不必定全面,是我目前已知的):

  1. JVM啓動時會預加載一些核心類,好比Object、String等
  2. 這個類被第一次真正使用到時,好比主類由於要調用其main方法,天然須要被加載
  3. 在A類校驗階段,可能須要加載其代碼中使用到的B類
  4. 在A類進行某個符號引用的解析時,須要加載對應的B類。好比正在執行A類的一個方法,執行到B.func(),那就須要解析B和func符號引用爲直接引用,那天然須要加載B類到方法區中

對應A類調用B類的狀況,JVM規範中說明,指令anewarray、checkcast、getfield、getstatic、instanceof、nvokedynamic、invokeinterface、invokespecial、invokestatic、invokevirtual、ldc、ldc_w、multianewarray、new、putfield和putstatic將符號引用指向運行時常量池,執行上述任何一條指令都須要對它的符號引用的進行解析,因此須要解析A類中對B類的符號引用,而解析是把符號引用替換爲真實引用,因此須要把B類加載到方法區中,這就觸發了加載流程。

而B類的連接流程,則是由於JVM規範中說明,在執行new,getstatic,putstatic或invokestatic這些指令時,須要確保目標類已經進行初始化流程,而初始化流程須要確保目標類已經被加載、驗證、準備,而加載以前執行過了,因此須要進入驗證和準備的流程。而連接中的解析過程不會執行,B類的解析會在執行B類中相關代碼時再進行。

上面說的兩個過程都是在執行字節碼時觸發的,好比invokestaic。而B類在驗證的過程當中,可能又會須要加載其代碼中使用到的C類。

參考資料:When is a Java Class loaded? - Stack Overflow

本文獨立博客地址:JVM源碼分析-類加載場景實例分析 | 木杉的博客

相關文章
相關標籤/搜索