用JS實現二叉樹數據結構, 完成遍歷、查找最大/小值、查找特定值以及刪除節點的操做。node
//定義節點 class Node { constructor(data){ this.root = this; this.data = data; this.left = null; this.right = null } } //建立二叉搜索樹(BST)) class BinarySearchTree { constructor(){ this.root = null } //插入節點 insert(data){ const newNode = new Node(data); const insertNode = (node,newNode) => { if (newNode.data < node.data){ if(node.left === null){ node.left = newNode }else { insertNode(node.left,newNode) } }else { if(node.right === null){ node.right = newNode }else{ insertNode(node.right,newNode) } } }; if(!this.root){ this.root = newNode }else { insertNode(this.root,newNode) } } //中序遍歷 inOrder(){ let backs = []; const inOrderNode = (node,callback) => { if(node !== null){ inOrderNode(node.left,callback); backs.push(callback(node.data)); inOrderNode(node.right,callback) } }; inOrderNode(this.root,callback); function callback(v){ return v } return backs } //前序遍歷 preOrder(){ let backs = []; const preOrderNode = (node,callback) => { if(node !== null){ backs.push(callback(node.data)); preOrderNode(node.left,callback); preOrderNode(node.right,callback) } }; preOrderNode(this.root,callback); function callback(v){ return v } return backs } //後序遍歷 postOrder(){ let backs = []; const postOrderNode = (node,callback) => { if(node !== null){ postOrderNode(node.left,callback); postOrderNode(node.right,callback); backs.push(callback(node.data)) } }; postOrderNode(this.root,callback); function callback(v){ return v } return backs } //查找最小值 getMin(node){ const minNode = node => { return node? (node.left? minNode(node.left):node):null }; return minNode( node || this.root) } //查找最大值 getMax(node){ const minNode = node => { return node? (node.right? minNode(node.right):node):null }; return minNode(node || this.root) } //查找特定值 find(data){ const findNode = (node,data) => { if(node===null) return false; if(node.data===data) return node; return findNode((data < node.data)? node.left: node.right,data) }; return findNode(this.root,data) } //刪除節點 remove(data){ const removeNode = (node,data) => { if(node === null) return null; if(node.data === data){ if(node.left === null && node.right === null) return null; if(node.left === null) return node.right; if(node.right === null) return node.left; if(node.left !==null && node.right !==null){ let _node = this.getMin(node.right); node.data = _node.data; node.right = removeNode(node.right,data); return node } } else if(data < node.data){ node.left=removeNode(node.left,data); return node } else { node.right=removeNode(node.right,data); return node } }; return removeNode(this.root,data) } } //建立BST const tree = new BinarySearchTree(); tree.insert(11); tree.insert(7); tree.insert(5); tree.insert(3); tree.insert(9); tree.insert(8); tree.insert(10); tree.insert(13); tree.insert(12); tree.insert(14); tree.insert(20); tree.insert(18); tree.insert(25); console.log(tree); console.log(tree.root); //中序遍歷BST console.log(tree.inOrder()); //前序遍歷BST console.log(tree.preOrder()); //後序遍歷BST console.log(tree.postOrder()); //搜索最小值 console.log(tree.getMin()); //搜索最大值 console.log(tree.getMax()); //查找特定值 console.log(tree.find(2)); console.log(tree.find(3)); console.log(tree.find(20)); //刪除節點,返回新的二叉樹,不改變原來的二叉樹 console.log(tree.remove(11)); a=tree.remove(11); console.log(a.root); console.log(tree);