在顏色空間系列1: RGB和CIEXYZ顏色空間的轉換及相關優化和顏色空間系列3: RGB和YUV顏色空間的轉換及優化算法兩篇文章中咱們給出了兩種不一樣的顏色空間的相互轉換之間的快速算法的實現代碼,可是那個是C#版本的,爲了比較方便,咱們這裏提供C版本的代碼,以RGB轉到YUV空間的代碼爲例:html
void RGBToYUV(unsigned char *RGB, unsigned char *Y, unsigned char *U, unsigned char *V, int Width, int Height, int Stride) { const int Shift = 15; const int HalfV = 1 << (Shift - 1); const int Y_B_WT = 0.114f * (1 << Shift), Y_G_WT = 0.587f * (1 << Shift), Y_R_WT = (1 << Shift) - Y_B_WT - Y_G_WT; const int U_B_WT = 0.436f * (1 << Shift), U_G_WT = -0.28886f * (1 << Shift), U_R_WT = -(U_B_WT + U_G_WT); const int V_B_WT = -0.10001 * (1 << Shift), V_G_WT = -0.51499f * (1 << Shift), V_R_WT = -(V_B_WT + V_G_WT); for (int YY = 0; YY < Height; YY++) { unsigned char *LinePS = RGB + YY * Stride; unsigned char *LinePY = Y + YY * Width; unsigned char *LinePU = U + YY * Width; unsigned char *LinePV = V + YY * Width; for (int XX = 0; XX < Width; XX++, LinePS += 3) { int Blue = LinePS[0], Green = LinePS[1], Red = LinePS[2]; LinePY[XX] = (Y_B_WT * Blue + Y_G_WT * Green + Y_R_WT * Red + HalfV) >> Shift; LinePU[XX] = ((U_B_WT * Blue + U_G_WT * Green + U_R_WT * Red + HalfV) >> Shift) + 128; LinePV[XX] = ((V_B_WT * Blue + V_G_WT * Green + V_R_WT * Red + HalfV) >> Shift) + 128; } } }
上述代碼和顏色空間系列3: RGB和YUV顏色空間的轉換及優化算法中的有所不一樣,可是應該說更加合理,注意Y_R_WT/U_R_WT/V_R_WT 的書寫方式有所不一樣,這主要是爲了保證定點化後的係數不會放大偏差,同時注意計算時每一項還增長了HalfV值,這主要是爲了保證對計算結果的四捨五入。算法
現代的CPU都很強勁,找了一臺普通的I5電腦測試,1080P的圖平均轉換時間爲10ms,大概能獲得100fps的轉換速率,可是從實際應用來說,在不少場合這個耗時仍是多了點,若是須要處理1080P這樣的高清視頻,考慮到綜合因素,單幀的總處理時間不宜超過30ms,因此還有必要進一步提升這個算法的速度。編程
憑直覺,上述代碼用GPU實現應該有很高的並行性,不知道最後速度會如何。app
俺不會GPU,只會用SSE進行優化,先試一試把,一種最直接最樸實的寫法以下:ide
void RGBToYUVSSE(unsigned char *RGB, unsigned char *Y, unsigned char *U, unsigned char *V, int Width, int Height, int Stride) { const int Shift = 15; const int HalfV = 1 << (Shift - 1); const int Y_B_WT = 0.114f * (1 << Shift), Y_G_WT = 0.587f * (1 << Shift), Y_R_WT = (1 << Shift) - Y_B_WT - Y_G_WT; const int U_B_WT = 0.436f * (1 << Shift), U_G_WT = -0.28886f * (1 << Shift), U_R_WT = -(U_B_WT + U_G_WT); const int V_B_WT = -0.10001 * (1 << Shift), V_G_WT = -0.51499f * (1 << Shift), V_R_WT = -(V_B_WT + V_G_WT); __m128i Weight_YB = _mm_set1_epi32(Y_B_WT), Weight_YG = _mm_set1_epi32(Y_G_WT), Weight_YR = _mm_set1_epi32(Y_R_WT); __m128i Weight_UB = _mm_set1_epi32(U_B_WT), Weight_UG = _mm_set1_epi32(U_G_WT), Weight_UR = _mm_set1_epi32(U_R_WT); __m128i Weight_VB = _mm_set1_epi32(V_B_WT), Weight_VG = _mm_set1_epi32(V_G_WT), Weight_VR = _mm_set1_epi32(V_R_WT); __m128i C128 = _mm_set1_epi32(128); __m128i Half = _mm_set1_epi32(HalfV); __m128i Zero = _mm_setzero_si128(); const int BlockSize = 16, Block = Width / BlockSize; for (int YY = 0; YY < Height; YY++) { unsigned char *LinePS = RGB + YY * Stride; unsigned char *LinePY = Y + YY * Width; unsigned char *LinePU = U + YY * Width; unsigned char *LinePV = V + YY * Width; for (int XX = 0; XX < Block * BlockSize; XX += BlockSize, LinePS += BlockSize * 3) { __m128i Src1, Src2, Src3, Blue, Green, Red; Src1 = _mm_loadu_si128((__m128i *)(LinePS + 0)); Src2 = _mm_loadu_si128((__m128i *)(LinePS + 16)); Src3 = _mm_loadu_si128((__m128i *)(LinePS + 32)); Blue = _mm_shuffle_epi8(Src1, _mm_setr_epi8(0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1)); Blue = _mm_or_si128(Blue, _mm_shuffle_epi8(Src2, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14, -1, -1, -1, -1, -1))); Blue = _mm_or_si128(Blue, _mm_shuffle_epi8(Src3, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 4, 7, 10, 13))); Green = _mm_shuffle_epi8(Src1, _mm_setr_epi8(1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1)); Green = _mm_or_si128(Green, _mm_shuffle_epi8(Src2, _mm_setr_epi8(-1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1))); Green = _mm_or_si128(Green, _mm_shuffle_epi8(Src3, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14))); Red = _mm_shuffle_epi8(Src1, _mm_setr_epi8(2, 5, 8, 11, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1)); Red = _mm_or_si128(Red, _mm_shuffle_epi8(Src2, _mm_setr_epi8(-1, -1, -1, -1, -1, 1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1))); Red = _mm_or_si128(Red, _mm_shuffle_epi8(Src3, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15))); // 以上操做把16個連續像素的像素順序由 B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R B G R // 更改成適合於SIMD指令處理的連續序列 B B B B B B B B B B B B B B B B G G G G G G G G G G G G G G G G R R R R R R R R R R R R R R R R // 並分別保存於三個SSE變量中,而且沒任何的冗餘數據。 __m128i Blue16L = _mm_unpacklo_epi8(Blue, Zero); __m128i Blue16H = _mm_unpackhi_epi8(Blue, Zero); __m128i Blue32LL = _mm_unpacklo_epi16(Blue16L, Zero); __m128i Blue32LH = _mm_unpackhi_epi16(Blue16L, Zero); __m128i Blue32HL = _mm_unpacklo_epi16(Blue16H, Zero); __m128i Blue32HH = _mm_unpackhi_epi16(Blue16H, Zero); __m128i Green16L = _mm_unpacklo_epi8(Green, Zero); __m128i Green16H = _mm_unpackhi_epi8(Green, Zero); __m128i Green32LL = _mm_unpacklo_epi16(Green16L, Zero); __m128i Green32LH = _mm_unpackhi_epi16(Green16L, Zero); __m128i Green32HL = _mm_unpacklo_epi16(Green16H, Zero); __m128i Green32HH = _mm_unpackhi_epi16(Green16H, Zero); __m128i Red16L = _mm_unpacklo_epi8(Red, Zero); __m128i Red16H = _mm_unpackhi_epi8(Red, Zero); __m128i Red32LL = _mm_unpacklo_epi16(Red16L, Zero); __m128i Red32LH = _mm_unpackhi_epi16(Red16L, Zero); __m128i Red32HL = _mm_unpacklo_epi16(Red16H, Zero); __m128i Red32HH = _mm_unpackhi_epi16(Red16H, Zero); // 以上操做把三個SSE變量裏的字節數據分別提取到12個包含4個int類型的數據的SSE變量裏,以便後續的乘積操做不溢出 __m128i LL_Y = _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32LL, Weight_YB), _mm_add_epi32(_mm_mullo_epi32(Green32LL, Weight_YG), _mm_mullo_epi32(Red32LL, Weight_YR))),Half), Shift); __m128i LH_Y = _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32LH, Weight_YB), _mm_add_epi32(_mm_mullo_epi32(Green32LH, Weight_YG), _mm_mullo_epi32(Red32LH, Weight_YR))), Half), Shift); __m128i HL_Y = _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32HL, Weight_YB), _mm_add_epi32(_mm_mullo_epi32(Green32HL, Weight_YG), _mm_mullo_epi32(Red32HL, Weight_YR))), Half), Shift); __m128i HH_Y = _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32HH, Weight_YB), _mm_add_epi32(_mm_mullo_epi32(Green32HH, Weight_YG), _mm_mullo_epi32(Red32HH, Weight_YR))), Half), Shift); _mm_storeu_si128((__m128i*)(LinePY + XX), _mm_packus_epi16(_mm_packus_epi32(LL_Y, LH_Y), _mm_packus_epi32(HL_Y, HH_Y))); // 4個包含4個int類型的SSE變量從新打包爲1個包含16個字節數據的SSE變量 // 以上操做完成:Y[0 - 15] = (Y_B_WT * Blue[0 - 15]+ Y_G_WT * Green[0 - 15] + Y_R_WT * Red[0 - 15] + HalfV) >> Shift; __m128i LL_U = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32LL, Weight_UB), _mm_add_epi32(_mm_mullo_epi32(Green32LL, Weight_UG), _mm_mullo_epi32(Red32LL, Weight_UR))), Half), Shift), C128); __m128i LH_U = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32LH, Weight_UB), _mm_add_epi32(_mm_mullo_epi32(Green32LH, Weight_UG), _mm_mullo_epi32(Red32LH, Weight_UR))), Half), Shift), C128); __m128i HL_U = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32HL, Weight_UB), _mm_add_epi32(_mm_mullo_epi32(Green32HL, Weight_UG), _mm_mullo_epi32(Red32HL, Weight_UR))), Half), Shift), C128); __m128i HH_U = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32HH, Weight_UB), _mm_add_epi32(_mm_mullo_epi32(Green32HH, Weight_UG), _mm_mullo_epi32(Red32HH, Weight_UR))), Half), Shift), C128); _mm_storeu_si128((__m128i*)(LinePU + XX), _mm_packus_epi16(_mm_packus_epi32(LL_U, LH_U), _mm_packus_epi32(HL_U, HH_U))); // 以上操做完成:U[0 - 15] = ((U_B_WT * Blue[0 - 15]+ U_G_WT * Green[0 - 15] + U_R_WT * Red[0 - 15] + HalfV) >> Shift) + 128; __m128i LL_V = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32LL, Weight_VB), _mm_add_epi32(_mm_mullo_epi32(Green32LL, Weight_VG), _mm_mullo_epi32(Red32LL, Weight_VR))), Half), Shift), C128); __m128i LH_V = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32LH, Weight_VB), _mm_add_epi32(_mm_mullo_epi32(Green32LH, Weight_VG), _mm_mullo_epi32(Red32LH, Weight_VR))), Half), Shift), C128); __m128i HL_V = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32HL, Weight_VB), _mm_add_epi32(_mm_mullo_epi32(Green32HL, Weight_VG), _mm_mullo_epi32(Red32HL, Weight_VR))), Half), Shift), C128); __m128i HH_V = _mm_add_epi32(_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(Blue32HH, Weight_VB), _mm_add_epi32(_mm_mullo_epi32(Green32HH, Weight_VG), _mm_mullo_epi32(Red32HH, Weight_VR))), Half), Shift), C128); _mm_storeu_si128((__m128i*)(LinePV + XX), _mm_packus_epi16(_mm_packus_epi32(LL_V, LH_V), _mm_packus_epi32(HL_V, HH_V))); // 以上操做完成:V[0 - 15] = ((V_B_WT * Blue[0 - 15]+ V_G_WT * Green[0 - 15] + V_R_WT * Red[0 - 15] + HalfV) >> Shift) + 128; } for (int XX = Block * BlockSize; XX < Width; XX++, LinePS += 3) // 每行剩餘的像素按照正常的方式處理 { int Blue = LinePS[0], Green = LinePS[1], Red = LinePS[2]; LinePY[XX] = (Y_B_WT * Blue + Y_G_WT * Green + Y_R_WT * Red + HalfV) >> Shift; LinePU[XX] = ((U_B_WT * Blue + U_G_WT * Green + U_R_WT * Red + HalfV) >> Shift) + 128; LinePV[XX] = ((V_B_WT * Blue + V_G_WT * Green + V_R_WT * Red + HalfV) >> Shift) + 128; } } }
(顯示器不是寬屏的朋友請下載代碼在VS裏瀏覽,否則會看暈的)。函數
基本上就是按照普通的C的代碼翻譯到SSE版本,按F5編譯執行,測試速度1080P的平均每幀約4.5ms,大概是普通C語言的2.2倍,爲何沒到四倍,多是我寫的不到位,可是我認爲主要的緣由仍是這裏面有蠻多的數據拆解和數據類型的轉換佔用了必定的CPU週期。但總的來講仍是有至關大的進步的。post
稍微分析下程序以幫助不太懂SSE的朋友。學習
前面的幾句加載和shffule語句主要是把BGR格式的圖像數據拆解爲單獨的通道數據,其詳細的原理見(真心描述的清楚):測試
SSE圖像算法優化系列八:天然飽和度(Vibrance)算法的模擬實現及其SSE優化(附源碼,可做爲SSE圖像入門,Vibrance算法也可用於簡單的膚色調整)。優化
中間一部分unpack代碼主要的主要做用是把字節數據擴展到32位的int類型數,由於後面的乘法結果是隻能用32位才能表達完整的。
那麼後面的_mm_srai_epi3二、_mm_add_epi3二、_mm_mullo_epi32等就是直接的C代碼的翻譯了,只是把普通的暈算法用函數名代替了而已。
從理論上說,上述代碼中的 const int Shift = 15;這個常量最大能夠取到23,這個與最後的計算精度有必定的關係,可是也是影響不大。
2.2倍的提速,就這樣放棄了嗎,不,這不科學,也不是我Imageshop的風格,繼續加油。
每當這個時候,我老是習慣性的再翻一遍Intel的SSE幫助文檔,也許那個裏面還藏着其餘的葵花寶典。
當咱們定位到_mm_madd_epi16這個函數時,雖然他只比普通的add函數多了一個m,可是當看到他下面對該函數功能的解釋時,那真的眼前一亮,看下MSDN的說明:
Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b.
__m128i _mm_madd_epi16 (__m128i a, __m128i b);
r0 := (a0 * b0) + (a1 * b1)
r1 := (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * b5)
r3 := (a6 * b6) + (a7 * b7)
注意到這個函數內部實際執行了8次乘法和4次加法,惟一區別的就是參數要求是signed short類型,那能應用到咱們的例子中嗎?
首先咱們來看Y變量的計算式:
LinePY[XX] = (Y_B_WT * Blue + Y_G_WT * Green + Y_R_WT * Red + HalfV) >> Shift;
LinePU[XX] = ((U_B_WT * Blue + U_G_WT * Green + U_R_WT * Red + HalfV) >> Shift) + 128;
LinePV[XX] = ((V_B_WT * Blue + V_G_WT * Green + V_R_WT * Red + HalfV) >> Shift) + 128;
注意到其中的HalfV = 1 << (Shift - 1),稍微改寫一下,咱們獲得:
LinePY[XX] = (Y_B_WT * Blue + Y_G_WT * Green + Y_R_WT * Red + 1 * HalfV) >> Shift;
LinePU[XX] = (U_B_WT * Blue + U_G_WT * Green + U_R_WT * Red + 257 * HalfV) >> Shift;
LinePV[XX] = (V_B_WT * Blue + V_G_WT * Green + V_R_WT * Red + 257 * HalfV) >> Shift;
至於算式中的257是怎麼獲得的,若是你不明白,回家問下你正在上小學的兒子吧。
這樣改寫目的很明顯,咱們正好把括號內的計算配對成了2組可利用_mm_madd_epi16函數進行計算的形式,那麼他在數據類型方面能符合_mm_madd_epi16的需求嗎,或者說咱們能改造他使得咱們的數據知足要求不。
_mm_madd_epi16的文檔中有提到其做用是:Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b,即參與計算的必須是帶符號的16位數據,首先圖像數範圍[0,255],確定知足要求,同時注意到上述係數絕對值都小於1,所以只要(1 << Shift)不大於32768,即Shift最大取值15時,時可以知足需求的,而Shift=15時的精度也足以知足實際的運用需求。
注意咱們改寫的最後一項,好比257 * HalfV,這裏咱們能夠認爲HalfV是該項的權重,257是係數。
還有一點,也是最重要的一點,主要到沒有r0 := (a0 * b0) + (a1 * b1)這裏的係數是交叉的,好比咱們認爲變量b裏面保存的是交叉的B和G分份量的權重,那麼a變量裏就應該交叉保存了Blue和Green的值,這時有兩個途徑:
一、咱們上述代碼裏已經得到了Blue和Green份量的連續排列變量,這個時候只須要使用unpacklo和unpackhi就能分別獲取低8位和高8位的交叉結果。
二、注意到獲取Blue和Green份量的連續排列變量時是用的shuffle指令,咱們也能夠採用不一樣的shuffle係數直接獲取交叉後的結果啊。
毫無疑問,第二種方式要快多了。
好,咱們貼出這樣改進後的結果(彷佛不用寬屏也能顯示全了):
void RGBToYUVSSE(unsigned char *RGB, unsigned char *Y, unsigned char *U, unsigned char *V, int Width, int Height, int Stride) {const int Shift = 15; // 這裏沒有絕對值大於1的係數,最大可取2^15次方的放大倍數。 const int HalfV = 1 << (Shift - 1); const int Y_B_WT = 0.114f * (1 << Shift), Y_G_WT = 0.587f * (1 << Shift), Y_R_WT = (1 << Shift) - Y_B_WT - Y_G_WT, Y_C_WT = 1; const int U_B_WT = 0.436f * (1 << Shift), U_G_WT = -0.28886f * (1 << Shift), U_R_WT = -(U_B_WT + U_G_WT), U_C_WT = 257; const int V_B_WT = -0.10001 * (1 << Shift), V_G_WT = -0.51499f * (1 << Shift), V_R_WT = -(V_B_WT + V_G_WT), V_C_WT = 257; __m128i Weight_YBG = _mm_setr_epi16(Y_B_WT, Y_G_WT, Y_B_WT, Y_G_WT, Y_B_WT, Y_G_WT, Y_B_WT, Y_G_WT); __m128i Weight_YRC = _mm_setr_epi16(Y_R_WT, Y_C_WT, Y_R_WT, Y_C_WT, Y_R_WT, Y_C_WT, Y_R_WT, Y_C_WT); __m128i Weight_UBG = _mm_setr_epi16(U_B_WT, U_G_WT, U_B_WT, U_G_WT, U_B_WT, U_G_WT, U_B_WT, U_G_WT); __m128i Weight_URC = _mm_setr_epi16(U_R_WT, U_C_WT, U_R_WT, U_C_WT, U_R_WT, U_C_WT, U_R_WT, U_C_WT); __m128i Weight_VBG = _mm_setr_epi16(V_B_WT, V_G_WT, V_B_WT, V_G_WT, V_B_WT, V_G_WT, V_B_WT, V_G_WT); __m128i Weight_VRC = _mm_setr_epi16(V_R_WT, V_C_WT, V_R_WT, V_C_WT, V_R_WT, V_C_WT, V_R_WT, V_C_WT); __m128i Half = _mm_setr_epi16(0, HalfV, 0, HalfV, 0, HalfV, 0, HalfV); __m128i Zero = _mm_setzero_si128(); int BlockSize = 16, Block = Width / BlockSize; for (int YY = 0; YY < Height; YY++) { unsigned char *LinePS = RGB + YY * Stride; unsigned char *LinePY = Y + YY * Width; unsigned char *LinePU = U + YY * Width; unsigned char *LinePV = V + YY * Width; for (int XX = 0; XX < Block * BlockSize; XX += BlockSize, LinePS += BlockSize * 3) { __m128i Src1 = _mm_loadu_si128((__m128i *)(LinePS + 0)); __m128i Src2 = _mm_loadu_si128((__m128i *)(LinePS + 16)); __m128i Src3 = _mm_loadu_si128((__m128i *)(LinePS + 32)); __m128i BGL = _mm_shuffle_epi8(Src1, _mm_setr_epi8(0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, -1, -1, -1, -1, -1)); BGL = _mm_or_si128(BGL, _mm_shuffle_epi8(Src2, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 2, 3, 5, 6))); __m128i BGH = _mm_shuffle_epi8(Src2, _mm_setr_epi8(8, 9, 11, 12, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1)); BGH = _mm_or_si128(BGH, _mm_shuffle_epi8(Src3, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14))); __m128i RCL = _mm_shuffle_epi8(Src1, _mm_setr_epi8(2, -1, 5, -1, 8, -1, 11, -1, 14, -1, -1, -1, -1, -1, -1, -1)); RCL = _mm_or_si128(RCL, _mm_shuffle_epi8(Src2, _mm_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 4, -1, 7, -1))); __m128i RCH = _mm_shuffle_epi8(Src2, _mm_setr_epi8(10, -1, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1)); RCH = _mm_or_si128(RCH, _mm_shuffle_epi8(Src3, _mm_setr_epi8(-1, -1, -1, -1, 0, -1, 3, -1, 6, -1, 9, -1, 12, -1, 15, -1))); __m128i BGLL = _mm_unpacklo_epi8(BGL, Zero); __m128i BGLH = _mm_unpackhi_epi8(BGL, Zero); __m128i RCLL = _mm_or_si128(_mm_unpacklo_epi8(RCL, Zero), Half); // HalfV是大於255的,只能在此處進行合併 __m128i RCLH = _mm_or_si128(_mm_unpackhi_epi8(RCL, Zero), Half); __m128i BGHL = _mm_unpacklo_epi8(BGH, Zero); __m128i BGHH = _mm_unpackhi_epi8(BGH, Zero); __m128i RCHL = _mm_or_si128(_mm_unpacklo_epi8(RCH, Zero), Half); __m128i RCHH = _mm_or_si128(_mm_unpackhi_epi8(RCH, Zero), Half); __m128i Y_LL = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGLL, Weight_YBG), _mm_madd_epi16(RCLL, Weight_YRC)), Shift); __m128i Y_LH = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGLH, Weight_YBG), _mm_madd_epi16(RCLH, Weight_YRC)), Shift); __m128i Y_HL = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGHL, Weight_YBG), _mm_madd_epi16(RCHL, Weight_YRC)), Shift); __m128i Y_HH = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGHH, Weight_YBG), _mm_madd_epi16(RCHH, Weight_YRC)), Shift); _mm_storeu_si128((__m128i*)(LinePY + XX), _mm_packus_epi16(_mm_packus_epi32(Y_LL, Y_LH), _mm_packus_epi32(Y_HL, Y_HH))); __m128i U_LL = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGLL, Weight_UBG), _mm_madd_epi16(RCLL, Weight_URC)), Shift); __m128i U_LH = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGLH, Weight_UBG), _mm_madd_epi16(RCLH, Weight_URC)), Shift); __m128i U_HL = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGHL, Weight_UBG), _mm_madd_epi16(RCHL, Weight_URC)), Shift); __m128i U_HH = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGHH, Weight_UBG), _mm_madd_epi16(RCHH, Weight_URC)), Shift); _mm_storeu_si128((__m128i*)(LinePU + XX), _mm_packus_epi16(_mm_packus_epi32(U_LL, U_LH), _mm_packus_epi32(U_HL, U_HH))); __m128i V_LL = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGLL, Weight_VBG), _mm_madd_epi16(RCLL, Weight_VRC)), Shift); __m128i V_LH = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGLH, Weight_VBG), _mm_madd_epi16(RCLH, Weight_VRC)), Shift); __m128i V_HL = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGHL, Weight_VBG), _mm_madd_epi16(RCHL, Weight_VRC)), Shift); __m128i V_HH = _mm_srai_epi32(_mm_add_epi32(_mm_madd_epi16(BGHH, Weight_VBG), _mm_madd_epi16(RCHH, Weight_VRC)), Shift); _mm_storeu_si128((__m128i*)(LinePV + XX), _mm_packus_epi16(_mm_packus_epi32(V_LL, V_LH), _mm_packus_epi32(V_HL, V_HH))); } for (int XX = Block * BlockSize; XX < Width; XX++, LinePS += 3) // 每行剩餘的像素按照正常的方式處理 { int Blue = LinePS[0], Green = LinePS[1], Red = LinePS[2]; LinePY[XX] = (Y_B_WT * Blue + Y_G_WT * Green + Y_R_WT * Red + Y_C_WT * HalfV) >> Shift; LinePU[XX] = (U_B_WT * Blue + U_G_WT * Green + U_R_WT * Red + U_C_WT * HalfV) >> Shift; LinePV[XX] = (V_B_WT * Blue + V_G_WT * Green + V_R_WT * Red + V_C_WT * HalfV) >> Shift; } } }
速度如何呢,結果是2.2ms,相比純C語言約有4.5倍的提高。
接下來咱們簡單的談下YUV到RGB空間的優化,普通的C語言以下:
void YUVToRGB(unsigned char *Y, unsigned char *U, unsigned char *V, unsigned char *RGB, int Width, int Height, int Stride) { const int Shift = 15; const int HalfV = 1 << (Shift - 1); const int B_Y_WT = 1 << Shift, B_U_WT = 2.03211f * (1 << Shift), B_V_WT = 0; const int G_Y_WT = 1 << Shift, G_U_WT = -0.39465f * (1 << Shift), G_V_WT = -0.58060f * (1 << Shift); const int R_Y_WT = 1 << Shift, R_U_WT = 0, R_V_WT = 1.13983 * (1 << Shift); for (int YY = 0; YY < Height; YY++) { unsigned char *LinePD = RGB + YY * Stride; unsigned char *LinePY = Y + YY * Width; unsigned char *LinePU = U + YY * Width; unsigned char *LinePV = V + YY * Width; for (int XX = 0; XX < Width; XX++, LinePD += 3) { int YV = LinePY[XX], UV = LinePU[XX] - 128, VV = LinePV[XX] - 128; LinePD[0] = ClampToByte(YV + ((B_U_WT * UV + HalfV) >> Shift)); LinePD[1] = ClampToByte(YV + ((G_U_WT * UV + G_V_WT * VV + HalfV) >> Shift)); LinePD[2] = ClampToByte(YV + ((R_V_WT * VV + HalfV) >> Shift)); } } }
雖然內部的加減乘除運算減小了,可是因爲須要進行範圍的Clamp,所以純C版本的實際耗時要比RGB轉到YUV多,大約在11.5ms左右。
一樣的道理,咱們還準備使用_mm_madd_epi16來優化,可是這裏的狀況就稍微複雜了一點。
第一,上面的C代碼爲了速度考慮,對YV份量沒有乘以係數,由於他乘以係數和後面的移位抵消了,可是咱們仍是考慮把他們展開,以LinePD[0]爲例:
LinePD[0] = ClampToByte(YV + ((B_U_WT * UV + HalfV) >> Shift));
展開:
LinePD[0] = ClampToByte(YV * (1 << Shift) + B_U_WT * UV + (1 << (Shift - 1))) >> Shift))
= ClampToByte((YV + 0.5) * (1 << Shift) + B_U_WT * UV) >> Shift))
= ClampToByte((YV * 2 + 1) * ((1 << Shift) >> 1) + B_U_WT * UV) >> Shift))
爲何這樣作呢,其目的就是想只用一次_mm_madd_epi16就能夠達到結果,此時至關於咱們把B_Y_WT = 1 << Shift改成了B_Y_WT = (1 << Shift) >> 1,同時像素值進行了乘2和加1,一樣的道理LinePD[1]也能夠進行一樣的處理。
LinePD[1]展開後大家以爲還要不要說,是RGB到YUV裏是相同的道理。
至於ClampToByte,SSE自帶了抗飽和處理,packs或者packus直接實現了這個功能,這也是個額外提速的地方。
可是注意,因爲YUV到RGB的轉換系數裏有個數據2.03211f ,大於2了,所以考慮_mm_madd_epi16的應用範圍這裏的Shift最大也只能取爲13了,可是彷佛也足夠了。編碼實測SSE優化後的代碼速度也在2.2ms左右,提速比達到了5.2倍,沒有比RGB到SSE快,是由於中間增長了一些加法計算。
這樣計算下來,兩個顏色空間相互轉換的時間針對1080P的圖,大約須要4.4ms,一般狀況下這種轉換是爲了讓算法只在Y通道作處理了,處理完後新的Y通道值和原有圖的UV通道組合起來,在轉換回RGB圖像,這樣就把原本須要在RGB三通道都處理的算法簡化到一個通道處理了,在對Y通道作的變化不太大的時候,這種處理方式的處理結果和直接在RGB空間作處理時效果差很少,可是若是不考慮空間轉換的耗時,那麼速度確能提升三倍,這裏的空間轉化先後耗時4.4ms,對總體幀率的影響就很是小了,比圖我是用的基於均方差的磨皮就能夠採用這種方式優化從而達到實時的效果。
在如上的實際應用中,考慮到內存佔用,咱們也沒有必要把UV通道的數據計算出來,而只計算Y通道的數據,這樣把上述計算Y通道的代碼單獨提取出來,而後再寫個void ModifyYComponent(unsigned char *Src, unsigned char *NewY, unsigned char *Dest, int Width, int Height, int Stride)這樣的函數把Y通道替換掉,這樣一個連續的寫法其中的-128和+128這項又能夠免去處理,固然具體怎麼寫內部仍是有不少學問值得研究的,只是感受上沒有太多人去使用SSE了,這裏就不浪費本身的寶貴時間了。
至於XYZ和RGB空間的互換,因爲他們的3個係數都沒有爲0的,只要注意相關shift值得取值合理,優化方式都例同RGB到XYZ的過程,這裏不予以贅述。
其實還有不少細節的東西再最初寫的時候也通過了各類嘗試,只有經過本身編寫才能體會中這中間的快樂和痛苦,看別人的代碼你看到的只是最後的成品。
回顧下今年一年的文章,基本上就是在學習SIMD優化,確實SIMD的優化確實在某些場合有着很大的提速價值,在手機端也有NEON指令集,基本上和SSE2都有對應的關係,不過我一心只關注PC的優化,這個市場如今是愈來愈小了,雖然在航空、醫療等工業場景仍是有必定的應用場景。手機編程太痛苦了,都一個老人家了,懶得再去折騰了。
快過年了,考慮下2018年,做爲一個編程自由人,我初步考慮下2018可能研究下16位圖像的加強、HDR技術等等,至於深度學習,仍是算了吧,知道有那麼個東西就OK了。
提早祝你們2018年新年快樂。
本文相關代碼下載:https://files.cnblogs.com/files/Imageshop/YUV_RGB.rar
基於本文的優化應用於磨皮的效果見:彩色圖工程:https://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar
到年末了,沒錢回家過年,望各位路過的大神施捨點。