整體來講設計模式分爲三大類:java
(1)建立型模式,共五種:工廠方法模式、抽象工廠模式、單例模式、建造者模式、原型模式。編程
(2)結構型模式,共七種:適配器模式、裝飾器模式、代理模式、外觀模式、橋接模式、組合模式、享元模式。設計模式
(3)行爲型模式,共十一種:策略模式、模板方法模式、觀察者模式、迭代子模式、責任鏈模式、命令模式、備忘錄模式、狀態模式、訪問者模式、中介者模式、解釋器模式。多線程
一、開閉原則(Open Close Principle)閉包
開閉原則就是說對擴展開放,對修改關閉。在程序須要進行拓展的時候,不能去修改原有的代碼,實現一個熱插拔的效果。架構
二、里氏代換原則(Liskov Substitution Principle)ide
其官方描述比較抽象,可自行百度。實際上能夠這樣理解:(1)子類的能力必須大於等於父類,即父類可使用的方法,子類均可以使用。(2)返回值也是一樣的道理。假設一個父類方法返回一個List,子類返回一個ArrayList,這固然能夠。若是父類方法返回一個ArrayList,子類返回一個List,就說不通了。這裏子類返回值的能力是比父類小的。(3)還有拋出異常的狀況。任何子類方法能夠聲明拋出父類方法聲明異常的子類。
而不能聲明拋出父類沒有聲明的異常。測試
三、依賴倒轉原則(Dependence Inversion Principle)ui
這個是開閉原則的基礎,具體內容:面向接口編程,依賴於抽象而不依賴於具體。this
四、接口隔離原則(Interface Segregation Principle)
這個原則的意思是:使用多個隔離的接口,比使用單個接口要好。仍是一個下降類之間的耦合度的意思,從這兒咱們看出,其實設計模式就是一個軟件的設計思想,從大型軟件架構出發,爲了升級和維護方便。因此上文中屢次出現:下降依賴,下降耦合。
五、迪米特法則(最少知道原則)(Demeter Principle)
爲何叫最少知道原則,就是說:一個實體應當儘可能少的與其餘實體之間發生相互做用,使得系統功能模塊相對獨立。
六、合成複用原則(Composite Reuse Principle)
原則是儘可能使用合成/聚合的方式,而不是使用繼承。
建立型模式,共五種:工廠方法模式、抽象工廠模式、單例模式、建造者模式、原型模式。
3.一、工廠方法模式
工廠方法模式分爲三種:普通工廠模式、多個工廠方法模式和靜態工廠方法模式。
3.1.一、普通工廠模式
普通工廠模式就是創建一個工廠類,對實現了同一接口的一些類進行實例的建立。
package com.mode.create; public interface MyInterface { public void print(); }
package com.mode.create; public class MyClassOne implements MyInterface { @Override public void print() { System.out.println("MyClassOne"); } }
package com.mode.create; public class MyClassTwo implements MyInterface { @Override public void print() { System.out.println("MyClassTwo"); } }
package com.mode.create; public class MyFactory { public MyInterface produce(String type) { if ("One".equals(type)) { return new MyClassOne(); } else if ("Two".equals(type)) { return new MyClassTwo(); } else { System.out.println("沒有要找的類型"); return null; } } }
package com.mode.create; public class FactoryTest { public static void main(String[] args){ MyFactory factory = new MyFactory(); MyInterface myi = factory.produce("One"); myi.print(); } }
FactoryTest的運行結果我想應該很明顯了。
再回頭來理解這句話:普通工廠模式就是創建一個工廠類,對實現了同一接口的一些類進行實例的建立。
3.1.二、多個工廠方法模式
多個工廠方法模式,是對普通工廠方法模式的改進,多個工廠方法模式就是提供多個工廠方法,分別建立對象。
直接看代碼吧,咱們修改MyFactory和FactoryTest以下:
package com.mode.create; public class MyFactory { public MyInterface produceOne() { return new MyClassOne(); } public MyInterface produceTwo() { return new MyClassTwo(); } }
package com.mode.create; public class FactoryTest { public static void main(String[] args){ MyFactory factory = new MyFactory(); MyInterface myi = factory.produceOne(); myi.print(); } }
運行結果也是十分明顯了。
再回頭來理解這句話:多個工廠方法模式,是對普通工廠方法模式的改進,多個工廠方法模式就是提供多個工廠方法,分別建立對象。
3.1.三、靜態工廠方法模式
靜態工廠方法模式,將上面的多個工廠方法模式裏的方法置爲靜態的,不須要建立實例,直接調用便可。
直接看代碼吧,咱們修改MyFactory和FactoryTest以下:
package com.mode.create; public class MyFactory { public static MyInterface produceOne() { return new MyClassOne(); } public static MyInterface produceTwo() { return new MyClassTwo(); } }
package com.mode.create; public class FactoryTest { public static void main(String[] args){ MyInterface myi = MyFactory.produceOne(); myi.print(); } }
運行結果依舊很明顯。
再回顧:靜態工廠方法模式,將上面的多個工廠方法模式裏的方法置爲靜態的,不須要建立實例,直接調用便可。
3.二、抽象工廠模式
工廠方法模式有一個問題就是,類的建立依賴工廠類,也就是說,若是想要拓展程序,必須對工廠類進行修改,這違背了閉包原則。
爲解決這個問題,咱們來看看抽象工廠模式:建立多個工廠類,這樣一旦須要增長新的功能,直接增長新的工廠類就能夠了,不須要修改以前的代碼。
這樣就符合閉包原則了。
下面來看看代碼:
MyInterface、MyClassOne、MyClassTwo不變。
新增以下接口和類:
package com.mode.create; public interface Provider { public MyInterface produce(); }
package com.mode.create; public class MyFactoryOne implements Provider { @Override public MyInterface produce() { return new MyClassOne(); } }
package com.mode.create; public class MyFactoryTwo implements Provider { @Override public MyInterface produce() { return new MyClassTwo(); } }
修改測試類FactoryTest以下:
package com.mode.create; public class FactoryTest { public static void main(String[] args){ Provider provider = new MyFactoryOne(); MyInterface myi = provider.produce(); myi.print(); } }
運行結果依舊顯然。
再回顧:抽象工廠模式就是建立多個工廠類,這樣一旦須要增長新的功能,直接增長新的工廠類就能夠了,不須要修改以前的代碼。
3.三、單例模式
單例模式,不須要過多的解釋。
直接看代碼吧:
package test; public class MyObject { private static MyObject myObject; private MyObject() { } public static MyObject getInstance() { if (myObject != null) { } else { myObject = new MyObject(); } return myObject; } }
可是這樣會引起多線程問題,詳細解說能夠看《Java多線程編程核心技術》書中的第六章。
3.四、建造者模式
建造者模式:是將一個複雜的對象的構建與它的表示分離,使得一樣的構建過程能夠建立不一樣的表示。
字面看來很是抽象,實際上它也十分抽象!!!!
建造者模式一般包括下面幾個角色:
(1) Builder:給出一個抽象接口,以規範產品對象的各個組成成分的建造。這個接口規定要實現複雜對象的哪些部分的建立,並不涉及具體的對象部件的建立。
(2) ConcreteBuilder:實現Builder接口,針對不一樣的商業邏輯,具體化複雜對象的各部分的建立。 在建造過程完成後,提供產品的實例。
(3)Director:調用具體建造者來建立複雜對象的各個部分,在指導者中不涉及具體產品的信息,只負責保證對象各部分完整建立或按某種順序建立。
(4)Product:要建立的複雜對象。
在遊戲開發中建造小人是常常的事了,要求是:小人必須包括頭,身體和腳。
下面咱們看看以下代碼:
Product(要建立的複雜對象。):
package com.mode.create; public class Person { private String head; private String body; private String foot; public String getHead() { return head; } public void setHead(String head) { this.head = head; } public String getBody() { return body; } public void setBody(String body) { this.body = body; } public String getFoot() { return foot; } public void setFoot(String foot) { this.foot = foot; } }
Builder(給出一個抽象接口,以規範產品對象的各個組成成分的建造。這個接口規定要實現複雜對象的哪些部分的建立,並不涉及具體的對象部件的建立。):
package com.mode.create; public interface PersonBuilder { void buildHead(); void buildBody(); void buildFoot(); Person buildPerson(); }
ConcreteBuilder(實現Builder接口,針對不一樣的商業邏輯,具體化複雜對象的各部分的建立。 在建造過程完成後,提供產品的實例。):
package com.mode.create; public class ManBuilder implements PersonBuilder { Person person; public ManBuilder() { person = new Person(); } public void buildBody() { person.setBody("建造男人的身體"); } public void buildFoot() { person.setFoot("建造男人的腳"); } public void buildHead() { person.setHead("建造男人的頭"); } public Person buildPerson() { return person; } }
Director(調用具體建造者來建立複雜對象的各個部分,在指導者中不涉及具體產品的信息,只負責保證對象各部分完整建立或按某種順序建立。):
package com.mode.create; public class PersonDirector { public Person constructPerson(PersonBuilder pb) { pb.buildHead(); pb.buildBody(); pb.buildFoot(); return pb.buildPerson(); } }
測試類:
package com.mode.create; public class Test { public static void main(String[] args) { PersonDirector pd = new PersonDirector(); Person person = pd.constructPerson(new ManBuilder()); System.out.println(person.getBody()); System.out.println(person.getFoot()); System.out.println(person.getHead()); } }
運行結果:
回顧:建造者模式:是將一個複雜的對象的構建與它的表示分離,使得一樣的構建過程能夠建立不一樣的表示。
3.五、原型模式
該模式的思想就是將一個對象做爲原型,對其進行復制、克隆,產生一個和原對象相似的新對象。
說道複製對象,我將結合對象的淺複製和深複製來講一下,首先須要瞭解對象深、淺複製的概念:
淺複製:將一個對象複製後,基本數據類型的變量都會從新建立,而引用類型,指向的仍是原對象所指向的。
深複製:將一個對象複製後,不管是基本數據類型還有引用類型,都是從新建立的。簡單來講,就是深複製進行了徹底完全的複製,而淺複製不完全。
寫一個深淺複製的例子:
package com.mode.create; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; public class Prototype implements Cloneable, Serializable { private static final long serialVersionUID = 1L; private int base; private Integer obj; /* 淺複製 */ public Object clone() throws CloneNotSupportedException { // 由於Cloneable接口是個空接口,你能夠任意定義實現類的方法名 // 如cloneA或者cloneB,由於此處的重點是super.clone()這句話 // super.clone()調用的是Object的clone()方法 // 而在Object類中,clone()是native(本地方法)的 Prototype proto = (Prototype) super.clone(); return proto; } /* 深複製 */ public Object deepClone() throws IOException, ClassNotFoundException { /* 寫入當前對象的二進制流 */ ByteArrayOutputStream bos = new ByteArrayOutputStream(); ObjectOutputStream oos = new ObjectOutputStream(bos); oos.writeObject(this); /* 讀出二進制流產生的新對象 */ ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray()); ObjectInputStream ois = new ObjectInputStream(bis); return ois.readObject(); } public int getBase() { return base; } public void setBase(int base) { this.base = base; } public Integer getObj() { return obj; } public void setObj(Integer obj) { this.obj = obj; } }
測試類:
package com.mode.create; import java.io.IOException; public class Test { public static void main(String[] args) throws CloneNotSupportedException, ClassNotFoundException, IOException { Prototype prototype = new Prototype(); prototype.setBase(1); prototype.setObj(new Integer(2)); /* 淺複製 */ Prototype prototype1 = (Prototype) prototype.clone(); /* 深複製 */ Prototype prototype2 = (Prototype) prototype.deepClone(); System.out.println(prototype1.getObj()==prototype1.getObj()); System.out.println(prototype1.getObj()==prototype2.getObj()); } }
運行結果: