圖片總共40我的,每人10張圖片,每張圖片高57,寬47。共400張圖片。dom
import numpy import pandas from PIL import Image from keras import backend as K from keras.utils import np_utils """ 加載圖像數據的函數,dataset_path即圖像olivettifaces的路徑 加載olivettifaces後,劃分爲train_data,valid_data,test_data三個數據集 函數返回train_data,valid_data,test_data以及對應的label """ # 400個樣本,40我的,每人10張樣本圖。每張樣本圖高57*寬47,須要2679個像素點。每一個像素點作了歸一化處理 def load_data(dataset_path): img = Image.open(dataset_path) img_ndarray = numpy.asarray(img, dtype='float64') / 256 print(img_ndarray.shape) faces = numpy.empty((400,57,47)) for row in range(20): for column in range(20): faces[row * 20 + column] = img_ndarray[row * 57:(row + 1) * 57, column * 47:(column + 1) * 47] # 設置400個樣本圖的標籤 label = numpy.empty(400) for i in range(40): label[i * 10:i * 10 + 10] = i label = label.astype(numpy.int) label = np_utils.to_categorical(label, 40) # 將40分類類標號轉化爲one-hot編碼 # 分紅訓練集、驗證集、測試集,大小以下 train_data = numpy.empty((320, 57,47)) # 320個訓練樣本 train_label = numpy.empty((320,40)) # 320個訓練樣本,每一個樣本40個輸出機率 valid_data = numpy.empty((40, 57,47)) # 40個驗證樣本 valid_label = numpy.empty((40,40)) # 40個驗證樣本,每一個樣本40個輸出機率 test_data = numpy.empty((40, 57,47)) # 40個測試樣本 test_label = numpy.empty((40,40)) # 40個測試樣本,每一個樣本40個輸出機率 for i in range(40): train_data[i * 8:i * 8 + 8] = faces[i * 10:i * 10 + 8] train_label[i * 8:i * 8 + 8] = label[i * 10:i * 10 + 8] valid_data[i] = faces[i * 10 + 8] valid_label[i] = label[i * 10 + 8] test_data[i] = faces[i * 10 + 9] test_label[i] = label[i * 10 + 9] return [(train_data, train_label), (valid_data, valid_label),(test_data, test_label)] if __name__ == '__main__': [(train_data, train_label), (valid_data, valid_label), (test_data, test_label)] = load_data('olivettifaces.gif') oneimg = train_data[0]*256 print(oneimg) im = Image.fromarray(oneimg) im.show()
import numpy as np np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D,AveragePooling2D from PIL import Image import FaceData # 全局變量 batch_size = 128 # 批處理樣本數量 nb_classes = 40 # 分類數目 epochs = 600 # 迭代次數 img_rows, img_cols = 57, 47 # 輸入圖片樣本的寬高 nb_filters = 32 # 卷積核的個數 pool_size = (2, 2) # 池化層的大小 kernel_size = (5, 5) # 卷積核的大小 input_shape = (img_rows, img_cols,1) # 輸入圖片的維度 [(X_train, Y_train), (X_valid, Y_valid),(X_test, Y_test)] =FaceData.load_data('olivettifaces.gif') X_train=X_train[:,:,:,np.newaxis] # 添加一個維度,表明圖片通道。這樣數據集共4個維度,樣本個數、寬度、高度、通道數 X_valid=X_valid[:,:,:,np.newaxis] # 添加一個維度,表明圖片通道。這樣數據集共4個維度,樣本個數、寬度、高度、通道數 X_test=X_test[:,:,:,np.newaxis] # 添加一個維度,表明圖片通道。這樣數據集共4個維度,樣本個數、寬度、高度、通道數 print('樣本數據集的維度:', X_train.shape,Y_train.shape) print('測試數據集的維度:', X_test.shape,Y_test.shape) # 構建模型 model = Sequential() model.add(Conv2D(6,kernel_size,input_shape=input_shape,strides=1)) # 卷積層1 model.add(AveragePooling2D(pool_size=pool_size,strides=2)) # 池化層 model.add(Conv2D(12,kernel_size,strides=1)) # 卷積層2 model.add(AveragePooling2D(pool_size=pool_size,strides=2)) # 池化層 model.add(Flatten()) # 拉成一維數據 model.add(Dense(nb_classes)) # 全鏈接層2 model.add(Activation('sigmoid')) # sigmoid評分 # 編譯模型 model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy']) # 訓練模型 model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs,verbose=1, validation_data=(X_test, Y_test)) # 評估模型 score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) y_pred = model.predict(X_test) y_pred = y_pred.argmax(axis=1) # 獲取機率最大的分類,獲取每行最大值所在的列 for i in range(len(y_pred)): oneimg = X_test[i,:,:,0]*256 im = Image.fromarray(oneimg) im.show() print('第%d我的識別爲第%d我的'%(i,y_pred[i]))