爲什麼要有索引?html
通常的應用系統,讀寫比例在10:1左右,並且插入操做和通常的更新操做不多出現性能問題,在生產環境中,咱們遇到最多的,也是最容易出問題的,仍是一些複雜的查詢操做,所以對查詢語句的優化顯然是重中之重。提及加速查詢,就不得不提到索引了。mysql
什麼是索引?web
索引在MySQL中也叫作「鍵」,是存儲引擎用於快速找到記錄的一種數據結構。索引對於良好的性能
很是關鍵,尤爲是當表中的數據量愈來愈大時,索引對於性能的影響愈發重要。
索引優化應該是對查詢性能優化最有效的手段了。索引可以輕易將查詢性能提升好幾個數量級。
索引至關於字典的音序表,若是要查某個字,若是不使用音序表,則須要從幾百頁中逐頁去查。算法
30 10 40 5 15 35 66 1 6 11 19 21 39 55 100
一 索引原理sql
索引的目的在於提升查詢效率,與咱們查閱圖書所用的目錄是一個道理:先定位到章,而後定位到該章下的一個小節,而後找到頁數。類似的例子還有:查字典,查火車車次,飛機航班等數據庫
本質都是:經過不斷地縮小想要獲取數據的範圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是說,有了這種索引機制,咱們能夠老是用同一種查找方式來鎖定數據。vim
數據庫也是同樣,但顯然要複雜的多,由於不只面臨着等值查詢,還有範圍查詢(>、<、between、in)、模糊查詢(like)、並集查詢(or)等等。數據庫應該選擇怎麼樣的方式來應對全部的問題呢?咱們回想字典的例子,能不能把數據分紅段,而後分段查詢呢?最簡單的若是1000條數據,1到100分紅第一段,101到200分紅第二段,201到300分紅第三段......這樣查第250條數據,只要找第三段就能夠了,一會兒去除了90%的無效數據。但若是是1千萬的記錄呢,分紅幾段比較好?稍有算法基礎的同窗會想到搜索樹,其平均複雜度是lgN,具備不錯的查詢性能。但這裏咱們忽略了一個關鍵的問題,複雜度模型是基於每次相同的操做成原本考慮的。而數據庫實現比較複雜,一方面數據是保存在磁盤上的,另一方面爲了提升性能,每次又能夠把部分數據讀入內存來計算,由於咱們知道訪問磁盤的成本大概是訪問內存的十萬倍左右,因此簡單的搜索樹難以知足複雜的應用場景。性能優化
二 磁盤IO與預讀服務器
前面提到了訪問磁盤,那麼這裏先簡單介紹一下磁盤IO和預讀,磁盤讀取數據靠的是機械運動,每次讀取數據花費的時間能夠分爲尋道時間、旋轉延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁道所須要的時間,主流磁盤通常在5ms如下;旋轉延遲就是咱們常常據說的磁盤轉速,好比一個磁盤7200轉,表示每分鐘能轉7200次,也就是說1秒鐘能轉120次,旋轉延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁盤讀出或將數據寫入磁盤的時間,通常在零點幾毫秒,相對於前兩個時間能夠忽略不計。那麼訪問一次磁盤的時間,即一次磁盤IO的時間約等於5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一臺500 -MIPS(Million Instructions Per Second)的機器每秒能夠執行5億條指令,由於指令依靠的是電的性質,換句話說執行一次IO的時間能夠執行約450萬條指令,數據庫動輒十萬百萬乃至千萬級數據,每次9毫秒的時間,顯然是個災難。下圖是計算機硬件延遲的對比圖,供你們參考:
考慮到磁盤IO是很是高昂的操做,計算機操做系統作了一些優化,當一次IO時,不光把當前磁盤地址的數據,而是把相鄰的數據也都讀取到內存緩衝區內,由於局部預讀性原理告訴咱們,當計算機訪問一個地址的數據的時候,與其相鄰的數據也會很快被訪問到。每一次IO讀取的數據咱們稱之爲一頁(page)。具體一頁有多大數據跟操做系統有關,通常爲4k或8k,也就是咱們讀取一頁內的數據時候,實際上才發生了一次IO,這個理論對於索引的數據結構設計很是有幫助。
前面講了索引的基本原理,數據庫的複雜性,又講了操做系統的相關知識,目的就是讓你們瞭解,任何一種數據結構都不是憑空產生的,必定會有它的背景和使用場景,咱們如今總結一下,咱們須要這種數據結構可以作些什麼,其實很簡單,那就是:每次查找數據時把磁盤IO次數控制在一個很小的數量級,最好是常數數量級。那麼咱們就想到若是一個高度可控的多路搜索樹是否能知足需求呢?就這樣,b+樹應運而生。
如上圖,是一顆b+樹,關於b+樹的定義能夠參見B+樹,這裏只說一些重點,淺藍色的塊咱們稱之爲一個磁盤塊,能夠看到每一個磁盤塊包含幾個數據項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數據項17和35,包含指針P一、P二、P3,P1表示小於17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大於35的磁盤塊。真實的數據存在於葉子節點即三、五、九、十、1三、1五、2八、2九、3六、60、7五、7九、90、99。非葉子節點只不存儲真實的數據,只存儲指引搜索方向的數據項,如1七、35並不真實存在於數據表中。
###b+樹的查找過程
如圖所示,若是要查找數據項29,那麼首先會把磁盤塊1由磁盤加載到內存,此時發生一次IO,在內存中用二分查找肯定29在17和35之間,鎖定磁盤塊1的P2指針,內存時間由於很是短(相比磁盤的IO)能夠忽略不計,經過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內存,發生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,經過指針加載磁盤塊8到內存,發生第三次IO,同時內存中作二分查找找到29,結束查詢,總計三次IO。真實的狀況是,3層的b+樹能夠表示上百萬的數據,若是上百萬的數據查找只須要三次IO,性能提升將是巨大的,若是沒有索引,每一個數據項都要發生一次IO,那麼總共須要百萬次的IO,顯然成本很是很是高。
###b+樹性質
1.索引字段要儘可能的小:經過上面的分析,咱們知道IO次數取決於b+數的高度h,假設當前數據表的數據爲N,每一個磁盤塊的數據項的數量是m,則有h=㏒(m+1)N,當數據量N必定的狀況下,m越大,h越小;而m = 磁盤塊的大小 / 數據項的大小,磁盤塊的大小也就是一個數據頁的大小,是固定的,若是數據項佔的空間越小,數據項的數量越多,樹的高度越低。這就是爲何每一個數據項,即索引字段要儘可能的小,好比int佔4字節,要比bigint8字節少一半。這也是爲何b+樹要求把真實的數據放到葉子節點而不是內層節點,一旦放到內層節點,磁盤塊的數據項會大幅度降低,致使樹增高。當數據項等於1時將會退化成線性表。
2.索引的最左匹配特性:當b+樹的數據項是複合的數據結構,好比(name,age,sex)的時候,b+數是按照從左到右的順序來創建搜索樹的,好比當(張三,20,F)這樣的數據來檢索的時候,b+樹會優先比較name來肯定下一步的所搜方向,若是name相同再依次比較age和sex,最後獲得檢索的數據;但當(20,F)這樣的沒有name的數據來的時候,b+樹就不知道下一步該查哪一個節點,由於創建搜索樹的時候name就是第一個比較因子,必需要先根據name來搜索才能知道下一步去哪裏查詢。好比當(張三,F)這樣的數據來檢索時,b+樹能夠用name來指定搜索方向,但下一個字段age的缺失,因此只能把名字等於張三的數據都找到,而後再匹配性別是F的數據了, 這個是很是重要的性質,即索引的最左匹配特性。
一 功能
#1. 索引的功能就是加速查找 #2. mysql中的primary key,unique,聯合惟一也都是索引,這些索引除了加速查找之外,還有約束的功能
二 MySQL的索引分類
普通索引INDEX:加速查找 惟一索引: -主鍵索引PRIMARY KEY:加速查找+約束(不爲空、不能重複) -惟一索引UNIQUE:加速查找+約束(不能重複) 聯合索引: -PRIMARY KEY(id,name):聯合主鍵索引 -UNIQUE(id,name):聯合惟一索引 -INDEX(id,name):聯合普通索引
舉個例子來講,好比你在爲某商場作一個會員卡的系統。 這個系統有一個會員表 有下列字段: 會員編號 INT 會員姓名 VARCHAR(10) 會員身份證號碼 VARCHAR(18) 會員電話 VARCHAR(10) 會員住址 VARCHAR(50) 會員備註信息 TEXT 那麼這個 會員編號,做爲主鍵,使用 PRIMARY 會員姓名 若是要建索引的話,那麼就是普通的 INDEX 會員身份證號碼 若是要建索引的話,那麼能夠選擇 UNIQUE (惟一的,不容許重複) #除此以外還有全文索引,即FULLTEXT 會員備註信息 , 若是須要建索引的話,能夠選擇全文搜索。 用於搜索很長一篇文章的時候,效果最好。 用在比較短的文本,若是就一兩行字的,普通的 INDEX 也能夠。 但其實對於全文搜索,咱們並不會使用MySQL自帶的該索引,而是會選擇第三方軟件如Sphinx,專門來作全文搜索。 #其餘的如空間索引SPATIAL,瞭解便可,幾乎不用
三 索引的兩大類型hash與btree
#咱們能夠在建立上述索引的時候,爲其指定索引類型,分兩類 hash類型的索引:查詢單條快,範圍查詢慢 btree類型的索引:b+樹,層數越多,數據量指數級增加(咱們就用它,由於innodb默認支持它) #不一樣的存儲引擎支持的索引類型也不同 InnoDB 支持事務,支持行級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; MyISAM 不支持事務,支持表級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; Memory 不支持事務,支持表級別鎖定,支持 B-tree、Hash 等索引,不支持 Full-text 索引; NDB 支持事務,支持行級別鎖定,支持 Hash 索引,不支持 B-tree、Full-text 等索引; Archive 不支持事務,支持表級別鎖定,不支持 B-tree、Hash、Full-text 等索引;
四 建立/刪除索引的語法
#方法一:建立表時 CREATE TABLE 表名 ( 字段名1 數據類型 [完整性約束條件…], 字段名2 數據類型 [完整性約束條件…], [UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY [索引名] (字段名[(長度)] [ASC |DESC]) ); #方法二:CREATE在已存在的表上建立索引 CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名 ON 表名 (字段名[(長度)] [ASC |DESC]) ; #方法三:ALTER TABLE在已存在的表上建立索引 ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名 (字段名[(長度)] [ASC |DESC]) ; #刪除索引:DROP INDEX 索引名 ON 表名字;
1 準備
#1. 準備表 create table s1( id int, name varchar(20), gender char(6), email varchar(50) ); #2. 建立存儲過程,實現批量插入記錄 delimiter $$ #聲明存儲過程的結束符號爲$$ create procedure auto_insert1() BEGIN declare i int default 1; while(i<3000000)do insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy')); set i=i+1; end while; END$$ #$$結束 delimiter ; #從新聲明分號爲結束符號 #3. 查看存儲過程 show create procedure auto_insert1\G #4. 調用存儲過程 call auto_insert1();
2 在沒有索引的前提下測試查詢速度
#無索引:從頭至尾掃描一遍,因此查詢速度很慢 mysql> select * from s1 where id=333; +------+---------+--------+----------------+ | id | name | gender | email | +------+---------+--------+----------------+ | 333 | egon333 | male | 333@oldboy.com | | 333 | egon333 | f | alex333@oldboy | | 333 | egon333 | f | alex333@oldboy | +------+---------+--------+----------------+ 3 rows in set (0.32 sec) mysql> select * from s1 where email='egon333@oldboy'; .... ... rows in set (0.36 sec)
3 加上索引
#1. 必定是爲搜索條件的字段建立索引,好比select * from t1 where age > 5;就須要爲age加上索引 #2. 在表中已經有大量數據的狀況下,建索引會很慢,且佔用硬盤空間,插入刪除更新都很慢,只有查詢快 好比create index idx on s1(id);會掃描表中全部的數據,而後以id爲數據項,建立索引結構,存放於硬盤的表中。 建完之後,再查詢就會很快了 #3. 須要注意的是:innodb表的索引會存放於s1.ibd文件中,而myisam表的索引則會有單獨的索引文件table1.MYI
ps:咱們能夠去mysql的data目錄下找到該表,能夠看到佔用的硬盤空間多了
一 並非說咱們建立了索引就必定會加快查詢速度,以下索引未命中
select sql_no_cache * from s1 where email='xxx'; #命中索引,速度很快 select sql_no_cache * from s1 where email like '%old%'; #沒法使用索引,速度依然很慢
二 覆蓋索引與索引合併
#覆蓋索引: - 在索引文件中直接獲取數據 http://blog.itpub.net/22664653/viewspace-774667/ #分析 select * from s1 where id=123; 該sql命中了索引,但未覆蓋索引。 利用id=123到索引的數據結構中定位到該id在硬盤中的位置,或者說再數據表中的位置。 可是咱們select的字段爲*,除了id之外還須要其餘字段,這就意味着,咱們經過索引結構取到id還不夠,還須要利用該id再去找到該id所在行的其餘字段值,這是須要時間的,很明顯,若是咱們只select id,就減去了這份苦惱,以下 select id from s1 where id=123; 這條就是覆蓋索引了,命中索引,且從索引的數據結構直接就取到了id在硬盤的地址,速度很快
#索引合併:把多個單列索引合併使用 #分析: 組合索引能作到的事情,咱們均可以用索引合併去解決,好比 create index ne on s1(name,email);#組合索引 咱們徹底能夠單獨爲name和email建立索引 組合索引能夠命中: select * from s1 where name='egon' ; select * from s1 where name='egon' and email='adf'; 索引合併能夠命中: select * from s1 where name='egon' ; select * from s1 where email='adf'; select * from s1 where name='egon' and email='adf'; 乍一看好像索引合併更好了:能夠命中更多的狀況,但其實要分狀況去看,若是是name='egon' and email='adf',那麼組合索引的效率要高於索引合併,若是是單條件查,那麼仍是用索引合併比較合理
三 若想利用索引達到預想的提升查詢速度的效果,咱們在添加索引時,必須遵循如下原則
#1.最左前綴匹配原則,很是重要的原則, create index ix_name_email on s1(name,email,) - 最左前綴匹配:必須按照從左到右的順序匹配 select * from s1 where name='egon'; #能夠 select * from s1 where name='egon' and email='asdf'; #能夠 select * from s1 where email='alex@oldboy.com'; #不能夠 mysql會一直向右匹配直到遇到範圍查詢(>、<、between、like)就中止匹配,好比a = 1 and b = 2 and c > 3 and d = 4 若是創建(a,b,c,d)順序的索引,d是用不到索引的,若是創建(a,b,d,c)的索引則均可以用到,a,b,d的順序能夠任意調整。 #2.=和in能夠亂序,好比a = 1 and b = 2 and c = 3 創建(a,b,c)索引能夠任意順序,mysql的查詢優化器會幫你優化成索引能夠識別的形式 #3.儘可能選擇區分度高的列做爲索引,區分度的公式是count(distinct col)/count(*),表示字段不重複的比例,比例越大咱們掃描的記錄數越少,惟一鍵的區分度是1,而一些狀態、性別字段可能在大數據面前區分度就是0,那可能有人會問,這個比例有什麼經驗值嗎?使用場景不一樣,這個值也很難肯定,通常須要join的字段咱們都要求是0.1以上,即平均1條掃描10條記錄 #4.索引列不能參與計算,保持列「乾淨」,好比from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,緣由很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,須要把全部元素都應用函數才能比較,顯然成本太大。因此語句應該寫成create_time = unix_timestamp(’2014-05-29’);
最左前綴示範
mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male'; Empty set (0.39 sec) mysql> create index idx on s1(id,name,email,gender); #未遵循最左前綴 Query OK, 0 rows affected (15.27 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male'; Empty set (0.43 sec) mysql> drop index idx on s1; Query OK, 0 rows affected (0.16 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> create index idx on s1(name,email,gender,id); #遵循最左前綴 Query OK, 0 rows affected (15.97 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male'; Empty set (0.03 sec)
索引沒法命中的狀況須要注意:
- like '%xx' select * from tb1 where email like '%cn'; - 使用函數 select * from tb1 where reverse(email) = 'wupeiqi'; - or select * from tb1 where nid = 1 or name = 'seven@live.com'; 特別的:當or條件中有未創建索引的列才失效,如下會走索引 select * from tb1 where nid = 1 or name = 'seven'; select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex' - 類型不一致 若是列是字符串類型,傳入條件是必須用引號引發來,否則... select * from tb1 where email = 999; 普通索引的不等於不會走索引 - != select * from tb1 where email != 'alex' 特別的:若是是主鍵,則仍是會走索引 select * from tb1 where nid != 123 - > select * from tb1 where email > 'alex' 特別的:若是是主鍵或索引是整數類型,則仍是會走索引 select * from tb1 where nid > 123 select * from tb1 where num > 123 #排序條件爲索引,則select字段必須也是索引字段,不然沒法命中 - order by select name from s1 order by email desc; 當根據索引排序時候,select查詢的字段若是不是索引,則不走索引 select email from s1 order by email desc; 特別的:若是對主鍵排序,則仍是走索引: select * from tb1 order by nid desc; - 組合索引最左前綴 若是組合索引爲:(name,email) name and email -- 使用索引 name -- 使用索引 email -- 不使用索引 - count(1)或count(列)代替count(*)在mysql中沒有差異了 - create index xxxx on tb(title(19)) #text類型,必須制定長度
其餘注意事項
- 避免使用select * - count(1)或count(列) 代替 count(*) - 建立表時儘可能時 char 代替 varchar - 表的字段順序固定長度的字段優先 - 組合索引代替多個單列索引(常用多個條件查詢時) - 儘可能使用短索引 - 使用鏈接(JOIN)來代替子查詢(Sub-Queries) - 連表時注意條件類型需一致 - 索引散列值(重複少)不適合建索引,例:性別不適合
關於explain命令相信你們並不陌生,具體用法和字段含義能夠參考官網explain-output,這裏須要強調rows是核心指標,絕大部分rows小的語句執行必定很快(有例外,下面會講到)。因此優化語句基本上都是在優化rows。
執行計劃:讓mysql預估執行操做(通常正確) all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const id,email 慢: select * from userinfo3 where name='alex' explain select * from userinfo3 where name='alex' type: ALL(全表掃描) select * from userinfo3 limit 1; 快: select * from userinfo3 where email='alex' type: const(走索引)
http://blog.itpub.net/29773961/viewspace-1767044/
0.先運行看看是否真的很慢,注意設置SQL_NO_CACHE 1.where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每一個字段分別查詢,看哪一個字段的區分度最高 2.explain查看執行計劃,是否與1預期一致(從鎖定記錄較少的表開始查詢) 3.order by limit 形式的sql語句讓排序的表優先查 4.瞭解業務方使用場景 5.加索引時參照建索引的幾大原則 6.觀察結果,不符合預期繼續從0分析
慢日誌 - 執行時間 > 10 - 未命中索引 - 日誌文件路徑 配置: - 內存 show variables like '%query%'; show variables like '%queries%'; set global 變量名 = 值 - 配置文件 mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini' my.conf內容: slow_query_log = ON slow_query_log_file = D:/.... 注意:修改配置文件以後,須要重啓服務
MySQL日誌管理 ======================================================== 錯誤日誌: 記錄 MySQL 服務器啓動、關閉及運行錯誤等信息 二進制日誌: 又稱binlog日誌,以二進制文件的方式記錄數據庫中除 SELECT 之外的操做 查詢日誌: 記錄查詢的信息 慢查詢日誌: 記錄執行時間超過指定時間的操做 中繼日誌: 備庫將主庫的二進制日誌複製到本身的中繼日誌中,從而在本地進行重放 通用日誌: 審計哪一個帳號、在哪一個時段、作了哪些事件 事務日誌或稱redo日誌: 記錄Innodb事務相關的如事務執行時間、檢查點等 ======================================================== 1、bin-log 1. 啓用 # vim /etc/my.cnf [mysqld] log-bin[=dir\[filename]] # service mysqld restart 2. 暫停 //僅當前會話 SET SQL_LOG_BIN=0; SET SQL_LOG_BIN=1; 3. 查看 查看所有: # mysqlbinlog mysql.000002 按時間: # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" # mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54" # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 按字節數: # mysqlbinlog mysql.000002 --start-position=260 # mysqlbinlog mysql.000002 --stop-position=260 # mysqlbinlog mysql.000002 --start-position=260 --stop-position=930 4. 截斷bin-log(產生新的bin-log文件) a. 重啓mysql服務器 b. # mysql -uroot -p123 -e 'flush logs' 5. 刪除bin-log文件 # mysql -uroot -p123 -e 'reset master' 2、查詢日誌 啓用通用查詢日誌 # vim /etc/my.cnf [mysqld] log[=dir\[filename]] # service mysqld restart 3、慢查詢日誌 啓用慢查詢日誌 # vim /etc/my.cnf [mysqld] log-slow-queries[=dir\[filename]] long_query_time=n # service mysqld restart MySQL 5.6: slow-query-log=1 slow-query-log-file=slow.log long_query_time=3 查看慢查詢日誌 測試:BENCHMARK(count,expr) SELECT BENCHMARK(50000000,2*3);
https://tech.meituan.com/mysql-index.html
http://blog.itpub.net/29773961/viewspace-1767044/
http://www.cnblogs.com/wupeiqi/articles/5716963.html
http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.htmlhttp://www.cnblogs.com/mr-wid/archive/2013/05/09/3068229.htmlhttp://www.cnblogs.com/kissdodog/p/4159176.htmlhttp://blog.csdn.net/ggxxkkll/article/details/7551766http://blog.itpub.net/26435490/viewspace-1133659/http://pymysql.readthedocs.io/en/latest/user/examples.htmlhttp://www.cnblogs.com/lyhabc/p/3793524.htmlhttp://www.jianshu.com/p/ed32d69383d2http://doc.mysql.cn/mysql5/refman-5.1-zh.html-chapter/http://doc.mysql.cn/http://www.php100.com/html/webkaifa/database/Mysql/2013/0316/12223.htmlhttp://blog.csdn.net/ltylove2007/article/details/21084809http://lib.csdn.net/base/mysqlhttp://blog.csdn.net/c_enhui/article/details/9021271http://www.cnblogs.com/edisonchou/p/3878135.html?utm_source=tuicool&utm_medium=referralhttp://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765465.htmlhttp://www.cnblogs.com/cchust/p/3444510.htmlhttp://www.docin.com/p-705091183.htmlhttp://www.open-open.com/doc/view/51f552745f514bbbaf0aaecf6c88509ahttp://www.open-open.com/doc/view/f80947a5c805458db8cf929834d241bfhttp://www.open-open.com/lib/view/open1435498096607.htmlhttp://www.open-open.com/doc/view/48c510607ab84fd8b87b158c3fe9d177http://www.open-open.com/lib/view/open1448032294072.htmlhttp://www.open-open.com/lib/view/open1404887901263.htmlhttp://www.cnblogs.com/cchust/p/3426927.htmlhttp://wribao.php230.com/category/news/1138254.htmlhttp://www.iqiyi.com/w_19rqqds1ut.htmlhttp://wenku.baidu.com/link?url=7Grxv0cQ_a00Ni2ZEU_cbDk2Wd2VTzlnS2UPKST3OF4oDqoLUQ2rQpOmK8ap12RDnXbnNs6gbY8DXVvWmo9bMxjWGS_vkhYus22ghAZYuEShttp://www.cnblogs.com/edisonchou/p/3878135.htmlhttp://blog.chinaunix.net/uid-540802-id-3419311.htmlhttp://my.oschina.net/scipio/blog/293052http://blog.itpub.net/29773961/viewspace-1767044/http://my.oschina.net/lionets/blog/407263