AI時代:推薦引擎正在塑造人類

We shape our tools and afterwards our tools shape us. ------Marshall McLuhan程序員

麥克盧漢說:「咱們塑造了工具,反過來工具也在塑造咱們。」算法

我本人不反感AI,也相信人工智能會開創一個偉大的時代,可是咱們要思考一些東西,至少知道那是什麼。本人旨在讓你瞭解當前人工智能應用最廣泛的智能推薦引擎(Intelligent Recommendation Engine),其背後的設計理念,以及一些更深度的思考。關於理念,它不像技術要求太多的基礎,我儘可能不使用專業術語,因此本文一樣適合程序員之外羣體。編程

從「分類」提及

以你們熟悉的分類信息網爲例,像58同城、趕集網。網站把現實生活中的商品、服務進行分類進行展現,好比房產、二手車、家政服務等。這些內容便是現實世界對應的抽象,咱們能夠很容易的找到對應關係。微信

咱們再以求職網站爲例,像智聯招聘、BOSS直聘。網站按照職業把 人分類,好比程序員、廚師、設計師、數學家、物理學家等。cookie

那麼如今問題出現了,衆所周知,人工智能的完美入門人才是具備數學和計算機雙學位的碩士以上學歷人才。那麼,咱們如何把這樣的人分類呢?咱們沒法單一的將其納入到程序員或者數學家,咱們沒法爲每個這樣的複合型人(slash)進行單獨分類。session

分類產生矛盾。工具

咱們區分南方人、北方人,因此有地域歧視。咱們區分亞洲人、歐洲人,因此有種族歧視。「分類」只是人類簡化問題邏輯的手段,薛定諤的貓和羅素的理髮師已經證實了「分類」並不正確。因此在大計算時代,咱們引入「貼標籤」的概念。學習

貼標籤

AI時代是計算能力爆炸增加所帶來的。在強大的計算能力面前,咱們真的能夠針對每一個人進行「分類」,它的表現形式就是---貼標籤測試

30歲如下、程序員、屌絲、奶爸、熬夜、不愛運動、公衆號叫caiyongji、格子襯衫、機械鍵盤、牛仔褲……這些能夠是一個程序員的標籤。換個角度,「類別」反轉過來服務於單獨的某我的,這是在計算能力短缺的時代所沒法想象的。網站

傳統的智能推薦引擎對用戶進行多維度的數據採集、數據過濾、數據分析,而後建模,而人工智能時代的推薦引擎在創建模型步驟中加入Training the models(訓練、測試、驗證)。

最後,推薦引擎就能夠根據用戶標籤的權重(能夠理解爲對標籤的打分,表示側重點),對用戶進行精準推送了。

推薦引擎屬性分化

俗話是這麼說的「旱的旱死,澇的澇死」,「飽漢子不知餓漢子飢」,不知道這些俗語我用的恰當不恰當。個人意思是在智能引擎的推薦下,會增強屬性兩極分化。

咱們以程序員爲例,選取編程技巧、打遊戲、體育運動、熬夜、看書五個維度。通過推薦引擎的「塑造」後以下。

輸入圖片說明

目前,推薦引擎的算法會將權重比較大的標籤進行優先推廣,這就致使本來權重大的標籤獲得更多的曝光次數,最終使得權重大的標籤權重愈來愈大,而權重小的標籤在長時間的被忽略狀態下逐漸趨近於零。

推薦引擎行爲引導

波茲曼認爲,媒體可以以一種隱蔽卻強大的暗示力量來「定義現實世界」。其中媒體的形式極爲重要,由於特定的形式會偏好某種特殊的內容,最終會塑造整個文化的特徵。這就是所謂「媒體即隱喻」的主要涵義。

因爲「推薦」機制的屬性分化,那些高技術含量的、專業的、科學的、真正對人又幫助的信息被更少的人接觸,而那些簡單的、輕鬆的、娛樂的、裸露的、粗俗的信息被愈來愈多的人接觸。

咱們看一下具備影響力的百度、今日頭條和微博在今天(2018年1月13日10:04:xx)所推薦的內容。我刪除了cookie,使用匿名session,移除個人「標籤」。也就是說,下圖所推薦內容對大部分人適用。

輸入圖片說明

只要你好奇點擊,你的tittytainment(我翻譯成「愚樂」,那個三俗的譯法不要再傳了)屬性權重就會愈來愈大。娛樂新聞點擊過百萬,科普文章點擊不過百,這種現象正是推薦引擎的行爲引導致使的。

不客氣的說,百度、今日頭條、微博對國民素質的影響是有責任的。

無關推薦(Non Relational Recommendation)

對於你歷來都沒思考過的事物,你可能永遠都接觸不到,由於你不知道求索的路徑,因此有的人每月都讀與本身專業無關的書,來擴展本身的知識面。咱們舉個例子:

你可能會在網上搜索如何與女友和諧相處但你未必會搜索如何讓女友們和諧相處,有人笑談「貧窮限制了個人想象力」,其實否則,是你接收不到無關的推薦,你才被限制在特定的知識圈子裏。

因此我提出無關推薦這個概念。

對程序員進行畫像:

輸入圖片說明

如圖,當某個標籤沒有到達「程序員」的路徑時,他可能永遠沒法觸及那個標籤。這時,咱們推薦「無關」信息給用戶,強制產生路徑。

你可能會質疑,這是隨機強制推薦垃圾信息嗎?

其實否則,經過深度學習,咱們能夠進行大量的數據收集、數據分析和模型訓練,咱們是能夠找到對某個個體無關,但會讓其感興趣信息的興趣點。這種信息就是無關推薦的

最後

你天天接收到的「推薦」背後是各個團隊通過心理學研究、行爲學研究、大量計算設計的,人們正在失去深度思考、自主判斷的能力。對於進步青年、斜槓青年請保持思考。謹以此文獻給但願進步的你,但願你有所收穫和思考。


本文歡迎註明出處的轉載,但微信轉載請聯繫公衆號: caiyongji進行受權轉載。

相關文章
相關標籤/搜索