[case19]聊聊eureka的TaskDispatcher

本文主要研究一下eureka的TaskDispatcherjava

PeerEurekaNode

public class PeerEurekaNode {
    public PeerEurekaNode(PeerAwareInstanceRegistry registry, String targetHost, String serviceUrl, HttpReplicationClient replicationClient, EurekaServerConfig config) {
        this(registry, targetHost, serviceUrl, replicationClient, config, BATCH_SIZE, MAX_BATCHING_DELAY_MS, RETRY_SLEEP_TIME_MS, SERVER_UNAVAILABLE_SLEEP_TIME_MS);
    }

    /* For testing */ PeerEurekaNode(PeerAwareInstanceRegistry registry, String targetHost, String serviceUrl,
                                     HttpReplicationClient replicationClient, EurekaServerConfig config,
                                     int batchSize, long maxBatchingDelayMs,
                                     long retrySleepTimeMs, long serverUnavailableSleepTimeMs) {
        this.registry = registry;
        this.targetHost = targetHost;
        this.replicationClient = replicationClient;

        this.serviceUrl = serviceUrl;
        this.config = config;
        this.maxProcessingDelayMs = config.getMaxTimeForReplication();

        String batcherName = getBatcherName();
        ReplicationTaskProcessor taskProcessor = new ReplicationTaskProcessor(targetHost, replicationClient);
        this.batchingDispatcher = TaskDispatchers.createBatchingTaskDispatcher(
                batcherName,
                config.getMaxElementsInPeerReplicationPool(),
                batchSize,
                config.getMaxThreadsForPeerReplication(),
                maxBatchingDelayMs,
                serverUnavailableSleepTimeMs,
                retrySleepTimeMs,
                taskProcessor
        );
        this.nonBatchingDispatcher = TaskDispatchers.createNonBatchingTaskDispatcher(
                targetHost,
                config.getMaxElementsInStatusReplicationPool(),
                config.getMaxThreadsForStatusReplication(),
                maxBatchingDelayMs,
                serverUnavailableSleepTimeMs,
                retrySleepTimeMs,
                taskProcessor
        );
    }
    //......
}
  • statusUpdate
/**
     * Send the status information of of the ASG represented by the instance.
     *
     * <p>
     * ASG (Autoscaling group) names are available for instances in AWS and the
     * ASG information is used for determining if the instance should be
     * registered as {@link InstanceStatus#DOWN} or {@link InstanceStatus#UP}.
     *
     * @param asgName
     *            the asg name if any of this instance.
     * @param newStatus
     *            the new status of the ASG.
     */
    public void statusUpdate(final String asgName, final ASGStatus newStatus) {
        long expiryTime = System.currentTimeMillis() + maxProcessingDelayMs;
        nonBatchingDispatcher.process(
                asgName,
                new AsgReplicationTask(targetHost, Action.StatusUpdate, asgName, newStatus) {
                    public EurekaHttpResponse<?> execute() {
                        return replicationClient.statusUpdate(asgName, newStatus);
                    }
                },
                expiryTime
        );
    }
提交任務到nonBatchingDispatcher
  • cancel
public void cancel(final String appName, final String id) throws Exception {
        long expiryTime = System.currentTimeMillis() + maxProcessingDelayMs;
        batchingDispatcher.process(
                taskId("cancel", appName, id),
                new InstanceReplicationTask(targetHost, Action.Cancel, appName, id) {
                    @Override
                    public EurekaHttpResponse<Void> execute() {
                        return replicationClient.cancel(appName, id);
                    }

                    @Override
                    public void handleFailure(int statusCode, Object responseEntity) throws Throwable {
                        super.handleFailure(statusCode, responseEntity);
                        if (statusCode == 404) {
                            logger.warn("{}: missing entry.", getTaskName());
                        }
                    }
                },
                expiryTime
        );
    }
像cancel等方法是提交到batchingDispatcher

ReplicationTask

eureka-core-1.8.8-sources.jar!/com/netflix/eureka/cluster/ReplicationTask.javagit

/**
 * Base class for all replication tasks.
 */
abstract class ReplicationTask {

    private static final Logger logger = LoggerFactory.getLogger(ReplicationTask.class);

    protected final String peerNodeName;
    protected final Action action;

    ReplicationTask(String peerNodeName, Action action) {
        this.peerNodeName = peerNodeName;
        this.action = action;
    }

    public abstract String getTaskName();

    public Action getAction() {
        return action;
    }

    public abstract EurekaHttpResponse<?> execute() throws Throwable;

    public void handleSuccess() {
    }

    public void handleFailure(int statusCode, Object responseEntity) throws Throwable {
        logger.warn("The replication of task {} failed with response code {}", getTaskName(), statusCode);
    }
}
它是全部replication任務的基類

InstanceReplicationTask

eureka-core-1.8.8-sources.jar!/com/netflix/eureka/cluster/InstanceReplicationTask.javagithub

/**
 * Base {@link ReplicationTask} class for instance related replication requests.
 *
 * @author Tomasz Bak
 */
public abstract class InstanceReplicationTask extends ReplicationTask {

    /**
     * For cancel request there may be no InstanceInfo object available so we need to store app/id pair
     * explicitly.
     */
    private final String appName;
    private final String id;

    private final InstanceInfo instanceInfo;
    private final InstanceStatus overriddenStatus;

    private final boolean replicateInstanceInfo;
    //......
}
跟instance相關的replication任務,peerEurekaNode裏頭的register、heartbeat、statusUpdate、deleteStatusOverride、cancel用的都是InstanceReplicationTask。其中statusUpdate是提交到nonBatchingDispatcher,其餘的都提交到batchingDispatcher

TaskDispatcher

eureka-core-1.8.8-sources.jar!/com/netflix/eureka/util/batcher/TaskDispatcher.javaapp

/**
 * Task dispatcher takes task from clients, and delegates their execution to a configurable number of workers.
 * The task can be processed one at a time or in batches. Only non-expired tasks are executed, and if a newer
 * task with the same id is scheduled for execution, the old one is deleted. Lazy dispatch of work (only on demand)
 * to workers, guarantees that data are always up to date, and no stale task processing takes place.
 * <h3>Task processor</h3>
 * A client of this component must provide an implementation of {@link TaskProcessor} interface, which will do
 * the actual work of task processing. This implementation must be thread safe, as it is called concurrently by
 * multiple threads.
 * <h3>Execution modes</h3>
 * To create non batched executor call {@link TaskDispatchers#createNonBatchingTaskDispatcher(String, int, int, long, long, TaskProcessor)}
 * method. Batched executor is created by {@link TaskDispatchers#createBatchingTaskDispatcher(String, int, int, int, long, long, TaskProcessor)}.
 *
 * @author Tomasz Bak
 */
public interface TaskDispatcher<ID, T> {

    void process(ID id, T task, long expiryTime);

    void shutdown();
}
這個TaskDispatcher主要是任務分發,其中最重要的一點是隻有沒有過時的任務纔會執行,而後若是同一個id有更新的任務調度,則舊的那個將會被刪除掉。TaskDispatcher分nonBatchingDispatcher以及batchingDispatcher兩種。

TaskDispatchers

eureka-core-1.8.8-sources.jar!/com/netflix/eureka/util/batcher/TaskDispatchers.javaide

public class TaskDispatchers {

    public static <ID, T> TaskDispatcher<ID, T> createNonBatchingTaskDispatcher(String id,
                                                                                int maxBufferSize,
                                                                                int workerCount,
                                                                                long maxBatchingDelay,
                                                                                long congestionRetryDelayMs,
                                                                                long networkFailureRetryMs,
                                                                                TaskProcessor<T> taskProcessor) {
        final AcceptorExecutor<ID, T> acceptorExecutor = new AcceptorExecutor<>(
                id, maxBufferSize, 1, maxBatchingDelay, congestionRetryDelayMs, networkFailureRetryMs
        );
        final TaskExecutors<ID, T> taskExecutor = TaskExecutors.singleItemExecutors(id, workerCount, taskProcessor, acceptorExecutor);
        return new TaskDispatcher<ID, T>() {
            @Override
            public void process(ID id, T task, long expiryTime) {
                acceptorExecutor.process(id, task, expiryTime);
            }

            @Override
            public void shutdown() {
                acceptorExecutor.shutdown();
                taskExecutor.shutdown();
            }
        };
    }

    public static <ID, T> TaskDispatcher<ID, T> createBatchingTaskDispatcher(String id,
                                                                             int maxBufferSize,
                                                                             int workloadSize,
                                                                             int workerCount,
                                                                             long maxBatchingDelay,
                                                                             long congestionRetryDelayMs,
                                                                             long networkFailureRetryMs,
                                                                             TaskProcessor<T> taskProcessor) {
        final AcceptorExecutor<ID, T> acceptorExecutor = new AcceptorExecutor<>(
                id, maxBufferSize, workloadSize, maxBatchingDelay, congestionRetryDelayMs, networkFailureRetryMs
        );
        final TaskExecutors<ID, T> taskExecutor = TaskExecutors.batchExecutors(id, workerCount, taskProcessor, acceptorExecutor);
        return new TaskDispatcher<ID, T>() {
            @Override
            public void process(ID id, T task, long expiryTime) {
                acceptorExecutor.process(id, task, expiryTime);
            }

            @Override
            public void shutdown() {
                acceptorExecutor.shutdown();
                taskExecutor.shutdown();
            }
        };
    }
}
提供了兩個工廠方法,分別用來建立nonBatchingDispatcher以及batchingDispatcher。前者的AcceptorExecutor的maxBatchingSize爲1,TaskExecutors是singleItemExecutors方法建立;後者的AcceptorExecutor的maxBatchingSize由構造器傳入設置,默認是250,TaskExecutors是batchExecutors方法建立。

AcceptorExecutor

eureka-core-1.8.8-sources.jar!/com/netflix/eureka/util/batcher/AcceptorExecutor.javaoop

private final BlockingQueue<TaskHolder<ID, T>> acceptorQueue = new LinkedBlockingQueue<>();
    private final BlockingDeque<TaskHolder<ID, T>> reprocessQueue = new LinkedBlockingDeque<>();

    void process(ID id, T task, long expiryTime) {
        acceptorQueue.add(new TaskHolder<ID, T>(id, task, expiryTime));
        acceptedTasks++;
    }

    void reprocess(List<TaskHolder<ID, T>> holders, ProcessingResult processingResult) {
        reprocessQueue.addAll(holders);
        replayedTasks += holders.size();
        trafficShaper.registerFailure(processingResult);
    }

    void reprocess(TaskHolder<ID, T> taskHolder, ProcessingResult processingResult) {
        reprocessQueue.add(taskHolder);
        replayedTasks++;
        trafficShaper.registerFailure(processingResult);
    }
process放入acceptorQueue,reprocess放入reprocessQueue

AcceptorRunner

ThreadGroup threadGroup = new ThreadGroup("eurekaTaskExecutors");
    this.acceptorThread = new Thread(threadGroup, new AcceptorRunner(), "TaskAcceptor-" + id);
    this.acceptorThread.setDaemon(true);
    this.acceptorThread.start();

    class AcceptorRunner implements Runnable {
        @Override
        public void run() {
            long scheduleTime = 0;
            while (!isShutdown.get()) {
                try {
                    drainInputQueues();

                    int totalItems = processingOrder.size();

                    long now = System.currentTimeMillis();
                    if (scheduleTime < now) {
                        scheduleTime = now + trafficShaper.transmissionDelay();
                    }
                    if (scheduleTime <= now) {
                        assignBatchWork();
                        assignSingleItemWork();
                    }

                    // If no worker is requesting data or there is a delay injected by the traffic shaper,
                    // sleep for some time to avoid tight loop.
                    if (totalItems == processingOrder.size()) {
                        Thread.sleep(10);
                    }
                } catch (InterruptedException ex) {
                    // Ignore
                } catch (Throwable e) {
                    // Safe-guard, so we never exit this loop in an uncontrolled way.
                    logger.warn("Discovery AcceptorThread error", e);
                }
            }
        }
        //......
    }
這裏會循環不斷地drainInputQueues,而後assignBatchWork、assignSingleItemWork

drainInputQueues

private void drainInputQueues() throws InterruptedException {
            do {
                drainReprocessQueue();
                drainAcceptorQueue();

                if (!isShutdown.get()) {
                    // If all queues are empty, block for a while on the acceptor queue
                    if (reprocessQueue.isEmpty() && acceptorQueue.isEmpty() && pendingTasks.isEmpty()) {
                        TaskHolder<ID, T> taskHolder = acceptorQueue.poll(10, TimeUnit.MILLISECONDS);
                        if (taskHolder != null) {
                            appendTaskHolder(taskHolder);
                        }
                    }
                }
            } while (!reprocessQueue.isEmpty() || !acceptorQueue.isEmpty() || pendingTasks.isEmpty());
        }
這裏調用了drainReprocessQueue、drainAcceptorQueue
  • drainAcceptorQueue
private void drainAcceptorQueue() {
            while (!acceptorQueue.isEmpty()) {
                appendTaskHolder(acceptorQueue.poll());
            }
        }
        private void appendTaskHolder(TaskHolder<ID, T> taskHolder) {
            if (isFull()) {
                pendingTasks.remove(processingOrder.poll());
                queueOverflows++;
            }
            TaskHolder<ID, T> previousTask = pendingTasks.put(taskHolder.getId(), taskHolder);
            if (previousTask == null) {
                processingOrder.add(taskHolder.getId());
            } else {
                overriddenTasks++;
            }
        }
把acceptorQueue裏頭的任務拿出來,放到pendingTasks隊列裏頭
  • drainReprocessQueue
private void drainReprocessQueue() {
            long now = System.currentTimeMillis();
            while (!reprocessQueue.isEmpty() && !isFull()) {
                TaskHolder<ID, T> taskHolder = reprocessQueue.pollLast();
                ID id = taskHolder.getId();
                if (taskHolder.getExpiryTime() <= now) {
                    expiredTasks++;
                } else if (pendingTasks.containsKey(id)) {
                    overriddenTasks++;
                } else {
                    pendingTasks.put(id, taskHolder);
                    processingOrder.addFirst(id);
                }
            }
            if (isFull()) {
                queueOverflows += reprocessQueue.size();
                reprocessQueue.clear();
            }
        }
把reprocessQueue裏頭的任務拿出來,若是沒有過時並且不是重複id,則放到pendingTasks,而且processingOrder.addFirst(id)

assign work

void assignSingleItemWork() {
            if (!processingOrder.isEmpty()) {
                if (singleItemWorkRequests.tryAcquire(1)) {
                    long now = System.currentTimeMillis();
                    while (!processingOrder.isEmpty()) {
                        ID id = processingOrder.poll();
                        TaskHolder<ID, T> holder = pendingTasks.remove(id);
                        if (holder.getExpiryTime() > now) {
                            singleItemWorkQueue.add(holder);
                            return;
                        }
                        expiredTasks++;
                    }
                    singleItemWorkRequests.release();
                }
            }
        }

        void assignBatchWork() {
            if (hasEnoughTasksForNextBatch()) {
                if (batchWorkRequests.tryAcquire(1)) {
                    long now = System.currentTimeMillis();
                    int len = Math.min(maxBatchingSize, processingOrder.size());
                    List<TaskHolder<ID, T>> holders = new ArrayList<>(len);
                    while (holders.size() < len && !processingOrder.isEmpty()) {
                        ID id = processingOrder.poll();
                        TaskHolder<ID, T> holder = pendingTasks.remove(id);
                        if (holder.getExpiryTime() > now) {
                            holders.add(holder);
                        } else {
                            expiredTasks++;
                        }
                    }
                    if (holders.isEmpty()) {
                        batchWorkRequests.release();
                    } else {
                        batchSizeMetric.record(holders.size(), TimeUnit.MILLISECONDS);
                        batchWorkQueue.add(holders);
                    }
                }
            }
        }
這裏頭就是根據優先級把pendingTasks的任務放到singleItemWorkQueue或者batchWorkQueue

WorkerRunnable

abstract static class WorkerRunnable<ID, T> implements Runnable {
        final String workerName;
        final AtomicBoolean isShutdown;
        final TaskExecutorMetrics metrics;
        final TaskProcessor<T> processor;
        final AcceptorExecutor<ID, T> taskDispatcher;

        WorkerRunnable(String workerName,
                       AtomicBoolean isShutdown,
                       TaskExecutorMetrics metrics,
                       TaskProcessor<T> processor,
                       AcceptorExecutor<ID, T> taskDispatcher) {
            this.workerName = workerName;
            this.isShutdown = isShutdown;
            this.metrics = metrics;
            this.processor = processor;
            this.taskDispatcher = taskDispatcher;
        }

        String getWorkerName() {
            return workerName;
        }
    }
定義了基本的runnable類

SingleTaskWorkerRunnable

private final BlockingQueue<TaskHolder<ID, T>> singleItemWorkQueue = new LinkedBlockingQueue<>();

    static class SingleTaskWorkerRunnable<ID, T> extends WorkerRunnable<ID, T> {

        SingleTaskWorkerRunnable(String workerName,
                                 AtomicBoolean isShutdown,
                                 TaskExecutorMetrics metrics,
                                 TaskProcessor<T> processor,
                                 AcceptorExecutor<ID, T> acceptorExecutor) {
            super(workerName, isShutdown, metrics, processor, acceptorExecutor);
        }

        @Override
        public void run() {
            try {
                while (!isShutdown.get()) {
                    BlockingQueue<TaskHolder<ID, T>> workQueue = taskDispatcher.requestWorkItem();
                    TaskHolder<ID, T> taskHolder;
                    while ((taskHolder = workQueue.poll(1, TimeUnit.SECONDS)) == null) {
                        if (isShutdown.get()) {
                            return;
                        }
                    }
                    metrics.registerExpiryTime(taskHolder);
                    if (taskHolder != null) {
                        ProcessingResult result = processor.process(taskHolder.getTask());
                        switch (result) {
                            case Success:
                                break;
                            case Congestion:
                            case TransientError:
                                taskDispatcher.reprocess(taskHolder, result);
                                break;
                            case PermanentError:
                                logger.warn("Discarding a task of {} due to permanent error", workerName);
                        }
                        metrics.registerTaskResult(result, 1);
                    }
                }
            } catch (InterruptedException e) {
                // Ignore
            } catch (Throwable e) {
                // Safe-guard, so we never exit this loop in an uncontrolled way.
                logger.warn("Discovery WorkerThread error", e);
            }
        }
    }
這裏是直接從singleItemWorkQueue去poll任務,poll出來是TaskHolder<ID, T>>

BatchWorkerRunnable

private final BlockingQueue<List<TaskHolder<ID, T>>> batchWorkQueue = new LinkedBlockingQueue<>();

   static class BatchWorkerRunnable<ID, T> extends WorkerRunnable<ID, T> {

        BatchWorkerRunnable(String workerName,
                            AtomicBoolean isShutdown,
                            TaskExecutorMetrics metrics,
                            TaskProcessor<T> processor,
                            AcceptorExecutor<ID, T> acceptorExecutor) {
            super(workerName, isShutdown, metrics, processor, acceptorExecutor);
        }

        @Override
        public void run() {
            try {
                while (!isShutdown.get()) {
                    List<TaskHolder<ID, T>> holders = getWork();
                    metrics.registerExpiryTimes(holders);

                    List<T> tasks = getTasksOf(holders);
                    ProcessingResult result = processor.process(tasks);
                    switch (result) {
                        case Success:
                            break;
                        case Congestion:
                        case TransientError:
                            taskDispatcher.reprocess(holders, result);
                            break;
                        case PermanentError:
                            logger.warn("Discarding {} tasks of {} due to permanent error", holders.size(), workerName);
                    }
                    metrics.registerTaskResult(result, tasks.size());
                }
            } catch (InterruptedException e) {
                // Ignore
            } catch (Throwable e) {
                // Safe-guard, so we never exit this loop in an uncontrolled way.
                logger.warn("Discovery WorkerThread error", e);
            }
        }

        private List<TaskHolder<ID, T>> getWork() throws InterruptedException {
            BlockingQueue<List<TaskHolder<ID, T>>> workQueue = taskDispatcher.requestWorkItems();
            List<TaskHolder<ID, T>> result;
            do {
                result = workQueue.poll(1, TimeUnit.SECONDS);
            } while (!isShutdown.get() && result == null);
            return (result == null) ? new ArrayList<>() : result;
        }

        private List<T> getTasksOf(List<TaskHolder<ID, T>> holders) {
            List<T> tasks = new ArrayList<>(holders.size());
            for (TaskHolder<ID, T> holder : holders) {
                tasks.add(holder.getTask());
            }
            return tasks;
        }
    }
從batchWorkQueue取poll任務,不過與single不一樣的是,它poll出來是List<TaskHolder<ID, T>>

兩者對ProcessingResult的處理邏輯都同樣,以下:ui

switch (result) {
                        case Success:
                            break;
                        case Congestion:
                        case TransientError:
                            taskDispatcher.reprocess(holders, result);
                            break;
                        case PermanentError:
                            logger.warn("Discarding {} tasks of {} due to permanent error", holders.size(), workerName);
                    }
對於Congestion以及TransientError會從新放入隊列重試,對於PermanentError則會log warn一下。

小結

eureka本身設計了TaskDispatcher,分爲nonBatchingDispatcher以及batchingDispatcher。this

調度任務爲繼承ReplicationTask的InstanceReplicationTask,其定義了基本屬性,可是定義了public abstract String getTaskName()以及public abstract EurekaHttpResponse<?> execute() throws Throwable兩個抽象方法,它們在PeerEurekaNode裏頭有匿名的實現類,實現register、cancel等相應的請求邏輯。spa

調度邏輯主要是支持根據id及優先級來調度,後來的同id的任務會覆蓋正在運行的同id的任務,若是處理失敗,則會放入重試隊列,以後以最高優先級放入pendingTasks。設計

doc

相關文章
相關標籤/搜索