Python說文解字_Python之多任務_03

問:線程學完了,如今咱們開始學習進程了吧?html

答:是的。前面說到線程就是咱們的手,咱們如今能夠學習一下咱們的「胳膊」了。linux

  咱們有了多線程,爲何還要學習多進程呢?這是由於在Python當中有一把GIL鎖的存在,好比某些耗CPU的運算的時候,咱們能夠運行多進程多個CPU併發的操做進行操做。對於IO操做來講,咱們的瓶頸不在於咱們的CPU所以咱們用多線程操做。進程切換操做不是輕量級的。編程

  咱們首先舉例一個數據密集型的操做,來計算斐波那契數列:多線程

from  concurrent.futures import ThreadPoolExecutor,as_completed
from concurrent.futures import ProcessPoolExecutor
import time


def fib(n):
    if n<=2:
        return 1
    return fib(n-1) + fib(n-2)

if __name__ == '__main__':
    with ThreadPoolExecutor(3) as executor:
        all_task = [executor.submit(fib,(num)) for num in range(25,40)]
        start_time = time.time()
        for future in as_completed(all_task):
            data = future.result()
            print("get result:= {}".format(data))
        print("multithread last time is {}".format(time.time()-start_time))

    with ProcessPoolExecutor(3) as executor:
        all_task = [executor.submit(fib,(num)) for num in range(25,40)]
        start_time = time.time()
        for future in as_completed(all_task):
            data = future.result()
            print("get result:= {}".format(data))
        print("multiprocess last time is {}".format(time.time()-start_time))
# 
# multithread last time is 43.156678199768066
# multiprocess last time is 27.62783455848694

 

  咱們明顯看到多進程比多線程快。併發

 

  咱們在以一個IO操做來進行對比:app

from  concurrent.futures import ThreadPoolExecutor,as_completed
from concurrent.futures import ProcessPoolExecutor
import time


def random_sleep(n):
    time.sleep(n)
    return n

if __name__ == '__main__':
    with ThreadPoolExecutor(3) as executor:
        all_task = [executor.submit(random_sleep,(num)) for num in [2]*30]
        start_time = time.time()
        for future in as_completed(all_task):
            data = future.result()
            print("get result:= {}".format(data))
        print("multithread last time is {}".format(time.time()-start_time))

    with ProcessPoolExecutor(3) as executor:
        all_task = [executor.submit(random_sleep,(num)) for num in [2]*30]
        start_time = time.time()
        for future in as_completed(all_task):
            data = future.result()
            print("get result:= {}".format(data))
        print("multiprocess last time is {}".format(time.time()-start_time))
#
# multithread last time is 20.035860300064087
# multiprocess last time is 20.641016483306885

 

  

  正式進入咱們的進程操做:dom

import os
import time
# fork只能用於linux下面
pid = os.fork()
print("bobby")
if pid == 0:
    print("子進程{},父進程是{}".format(os.getpid(),os.getppid()))
else:
    print("我是父進程:{}".format(pid))

time.sleep(2)

  這段代碼只能在Linux下運行。咱們發現的問題是若是主進程結束了,子進程仍是會運行的。async

  

問:進程如何進行編程?性能

答:咱們懂了線程的編程,進程的編程會變得很是的簡單。多餘的內容就再也不講解,咱們講解一些不一樣的包,其實這些包的應用也是跟進程差很少的。學習

  multiprocessing

import multiprocessing
import time
def get_html(n):
    time.sleep(n)
    return n

if __name__ == '__main__':
    progress = multiprocessing.Process(target=get_html,args=(2,))
    progress.start()
    progress.join()

  咱們還能夠直接獲取進程的pid和ppid。

  其餘和咱們多線程差不都就不詳解了。

 

  使用進程池:

  進程池:Pool和ProcessPoolExecutor。後那個跟線程同樣。咱們單獨說一下Pool這個進程池。

import multiprocessing
import time
from multiprocessing import Pool


def get_html(n):
    time.sleep(n)
    return n

if __name__ == '__main__':
    progress = multiprocessing.Process(target=get_html,args=(1,))
    progress.start()
    progress.join()
    pool = Pool(multiprocessing.cpu_count())
    print(multiprocessing.cpu_count())
    result = pool.apply_async(get_html,args=(3,))
    pool.close()

  注意最後要關閉線程池。詳細的關於線程池的代碼能夠參照這裏:https://www.cnblogs.com/noah0532/p/10938771.html

 

  特別要說明的是有兩個方法:imap 和 imap_unordered(這個是誰先完成先打印誰)

for result in  pool.imap(get_html,[1,5,3]):

  

  進程間的通訊:

  進程間的通訊和線程間的通訊有同樣的也有不同的地方,好比鎖就不能使用了。

  舉一個簡單的例子:用隊列進行通訊

from multiprocessing import Process,Queue
# from queue import Queue  # 這個queue就不能用了
import time

def producer(queue):
    queue.put("a")
    time.sleep(2)

def consumer(queue):
    time.sleep(2)
    data = queue.get()
    print(data)
    
if __name__ == '__main__':
    queue = Queue(10)
    my_producer = Process(target=producer,args=(queue,))
    my_consumer = Process(target=consumer, args=(queue,))
    my_producer.start()
    my_consumer.start()
    my_producer.join()
    my_consumer.join()

  在多進程的編程中不能用以前的queue了,帶用multiprocessing裏面的queue,這一帶你要注意

 

  咱們再舉一個共享變量的例子:

from multiprocessing import Process
import time

def producer(a):
    a += 1
    time.sleep(2)


def consumer(a):
    time.sleep(2)
    print(a)

if __name__ == '__main__':
    a = 1
    my_producer = Process(target=producer,args=(a,))
    my_consumer = Process(target=consumer, args=(a,))
    my_producer.start()
    my_consumer.start()
    my_producer.join()
    my_consumer.join()

  咱們發現咱們的全局變量不能用了,正如咱們前面說的,咱們再進程中每一塊的變量是單獨的,不能共享的。

  另外multiprocessing中的queue也不能用在進程池當中。若是咱們想在進程當中應用就帶用Manager當中的Queue

from multiprocessing import Process,Queue,Manager,Pool
import time

def producer(queue):
    queue.put("a")
    time.sleep(2)

def consumer(queue):
    time.sleep(2)
    data = queue.get()
    print(data)

if __name__ == '__main__':
    queue = Manager().Queue(10)
    pool = Pool(2)

    pool.apply_async(producer,args=(queue,))
    pool.apply_async(consumer, args=(queue,))

    pool.close()
    pool.join()

 

  另外,咱們還能夠經過咱們的pipe管道來進行通信,可是Pipe只能使用兩個進程間的通訊,若是是兩個交換pipe的性能比queue高

from multiprocessing import Process,Queue,Manager,Pool,Pipe
import time

def producer(pipe):
    pipe.send("bobby")

def consumer(pipe):
    print(pipe.recv())

if __name__ == '__main__':
    # pipe只能用於兩個進程間的通信
    receive_pipe,send_pipe = Pipe()
    my_producer = Process(target=producer,args=(send_pipe,))
    my_consumer = Process(target=consumer, args=(receive_pipe,))

    my_producer.start()
    my_consumer.start()
    my_producer.join()
    my_consumer.join()

 

  重點:進程間的共享內存操做:Manager().dict(),array()....經常使用的數據類型都有。

from multiprocessing import Process,Queue,Manager,Pool,Pipe

def add_data(p_dict,key,value):
    p_dict[key] = value

if __name__ == '__main__':
    progress_dict = Manager().dict()

    first_progess = Process(target=add_data,args=(progress_dict,"bobby1",22))
    second_progess = Process(target=add_data, args=(progress_dict, "bobby1", 23))

    first_progess.start()
    second_progess.start()
    first_progess.join()
    second_progess.join()

    print(progress_dict)
# {'bobby1': 23}
相關文章
相關標籤/搜索