JavaShuo
欄目
標籤
#Paper Reading# xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems
時間 2020-12-30
原文
原文鏈接
論文題目: xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 論文地址: https://dl.acm.org/citation.cfm?id=3220023 論文發表於: KDD 2018(CCF A類會議) 論文大體內容: 本文主要介紹了DeepFM模型的變種——xDeep
>>阅读原文<<
相關文章
1.
CTR預估 論文精讀(十)--xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
2.
#Paper Reading# Wide & Deep Learning for Recommender Systems
3.
Paper-Reading
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
7.
#Paper Reading# Deep Learning Recommendation Model for Personalization and Recommendation Systems
8.
Wide & Deep Learning for Recommender Systems
9.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
10.
論文筆記 - Wide & Deep Learning for Recommender Systems
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
Kotlin學習(二)基本類型
相關標籤/搜索
explicit
recommender
interactions
implicit
systems
reading
feature
paper
feature...setfeature
action.....and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基礎應用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗體焦點監聽器
6.
DNS部署(二)DNS的解析(正向、反向、雙向、郵件解析及域名轉換)
7.
Java基礎(十九)集合(1)集合中主要接口和實現類
8.
瀏覽器工作原理學習筆記
9.
chrome瀏覽器構架學習筆記
10.
eclipse引用sun.misc開頭的類
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
CTR預估 論文精讀(十)--xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
2.
#Paper Reading# Wide & Deep Learning for Recommender Systems
3.
Paper-Reading
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
7.
#Paper Reading# Deep Learning Recommendation Model for Personalization and Recommendation Systems
8.
Wide & Deep Learning for Recommender Systems
9.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
10.
論文筆記 - Wide & Deep Learning for Recommender Systems
>>更多相關文章<<