linux高速緩存區是採用hash數組的格式對緩存頭信息進行管理。經過一個free_list指針指向空閒的緩存頭節點,緩存頭節點間使用雙向鏈表進行鏈接,而且採用lru緩存管理算法對數據進行維護。
大體見以下筆記圖:node
extern int end; // linux內核代碼的末端,高速緩存的起始位置在內核代碼的末端位置。
struct buffer_head * start_buffer = (struct buffer_head *) &end; // 首個buffer_head 的結構
struct buffer_head * hash_table[NR_HASH]; // hash數組表,對應上圖。其中NR_HASH爲307項
static struct buffer_head * free_list; // 空閒的首緩存頭指針
static struct task_struct * buffer_wait = NULL; //等待空閒緩存塊而睡眠的任務隊列頭指針,用於申請一個緩存塊時無可用的空閒緩存塊而進行等待加入隊列。
int NR_BUFFERS = 0;
複製代碼
static inline void wait_on_buffer(struct buffer_head * bh) {
cli(); // 關中斷,設置進程不可中斷地睡眠在該緩存區的b_wait 中。
while (bh->b_lock)
sleep_on(&bh->b_wait); // 須要wake_up明確的進行喚醒。
sti(); // 開中斷
}
複製代碼
static int sync_dev(int dev) {
/**** **** 對設備的緩存進行入盤操做 **** ****/
int i;
struct buffer_head * bh;
bh = start_buffer; // 遍歷NR_BUFFERS對應的全部緩存頭
for (i=0 ; i<NR_BUFFERS ; i++,bh++) {
if (bh->b_dev != dev)
continue;
wait_on_buffer(bh); // wait for b_lock util get lock.
if (bh->b_dirt)
ll_rw_block(WRITE,bh); // refresh dirty content to disk
}
return 0;
}
複製代碼
#define _hashfn(dev,block) (((unsigned)(dev^block))%NR_HASH)
該宏定義的是hash算法,經過對dev和block進行冪次計算,而後計算其所屬於的數組位置。
#define hash(dev,block) hash_table[_hashfn(dev,block)]
返回hash表的首指針位置
複製代碼
static inline void remove_from_queues(struct buffer_head * bh) {
/* remove from hash-queue */
if (bh->b_next)
bh->b_next->b_prev = bh->b_prev;
if (bh->b_prev)
bh->b_prev->b_next = bh->b_next;
// 調整先後指針
if (hash(bh->b_dev,bh->b_blocknr) == bh)
hash(bh->b_dev,bh->b_blocknr) = bh->b_next;
// 假設指針爲第一個數組指向的指針,則調節數組的指向
/* remove from free list */
if (!(bh->b_prev_free) || !(bh->b_next_free))
panic("Free block list corrupted");
bh->b_prev_free->b_next_free = bh->b_next_free;
bh->b_next_free->b_prev_free = bh->b_prev_free;
// 調整bh先後的free node,且當其等於free_list時,進行更正
if (free_list == bh)
free_list = bh->b_next_free;
}
複製代碼
static inline void insert_into_queues(struct buffer_head * bh) {
/* put at end of free list */
bh->b_next_free = free_list;
bh->b_prev_free = free_list->b_prev_free;
free_list->b_prev_free->b_next_free = bh;
free_list->b_prev_free = bh;
// 將buffer_head插入到free_list的最後一個位置,同時更新各個指針的指向
/* put the buffer in new hash-queue if it has a device */
bh->b_prev = NULL;
bh->b_next = NULL;
if (!bh->b_dev)
return;
bh->b_next = hash(bh->b_dev,bh->b_blocknr);
//插入到hash對應dev項的第一個位置
hash(bh->b_dev,bh->b_blocknr) = bh;
bh->b_next->b_prev = bh;
}
複製代碼
static struct buffer_head * find_buffer(int dev, int block) {
struct buffer_head * tmp;
for (tmp = hash(dev,block) ; tmp != NULL ; tmp = tmp->b_next)
if (tmp->b_dev==dev && tmp->b_blocknr==block)
return tmp;
return NULL;
}
複製代碼
/* * Why like this, I hear you say... The reason is race-conditions. * As we don't lock buffers (unless we are readint them, that is), * something might happen to it while we sleep (ie a read-error * will force it bad). This shouldn't really happen currently, but * the code is ready. */
struct buffer_head * get_hash_table(int dev, int block) {
struct buffer_head * bh;
repeat:
if (!(bh=find_buffer(dev,block)))
return NULL;
bh->b_count++;
wait_on_buffer(bh);
if (bh->b_dev != dev || bh->b_blocknr != block) {
// if bh is not current block,then release it.
brelse(bh);
goto repeat;
}
return bh;
}
複製代碼
struct buffer_head * getblk(int dev,int block) {
struct buffer_head * tmp;
repeat:
if (tmp=get_hash_table(dev,block))
return tmp;
tmp = free_list;
// 遍歷free_list鏈表,找到知足count爲0後嘗試上鎖,以後進行上鎖等待,解鎖後探測是否被引用
do {
if (!tmp->b_count) {
wait_on_buffer(tmp); /* we still have to wait */
if (!tmp->b_count) /* on it, it might be dirty */
break;
}
tmp = tmp->b_next_free;
} while (tmp != free_list || (tmp=NULL));
/* Kids, don't try THIS at home ^^^^^. Magic */
// 假設沒有合適的bufferr,等待buffer_wait的釋放
if (!tmp) {
printk("Sleeping on free buffer ..");
sleep_on(&buffer_wait);
printk("ok\n");
goto repeat;
}
tmp->b_count++;
remove_from_queues(tmp);
/* * Now, when we know nobody can get to this node (as it's removed from the * free list), we write it out. We can sleep here without fear of race- * conditions. */
if (tmp->b_dirt)
sync_dev(tmp->b_dev);
/* update buffer contents */
tmp->b_dev=dev;
tmp->b_blocknr=block;
tmp->b_dirt=0;
tmp->b_uptodate=0;
/* NOTE!! While we possibly slept in sync_dev(), somebody else might have * added "this" block already, so check for that. Thank God for goto's. */
if (find_buffer(dev,block)) {
tmp->b_dev=0; /* ok, someone else has beaten us */
tmp->b_blocknr=0; /* to it - free this block and */
tmp->b_count=0; /* try again */
insert_into_queues(tmp);
goto repeat;
}
/* and then insert into correct position */
insert_into_queues(tmp);
return tmp;
}
複製代碼
void brelse(struct buffer_head * buf) {
if (!buf)
return;
wait_on_buffer(buf);
if (!(buf->b_count--))
panic("Trying to free free buffer");
wake_up(&buffer_wait);
}
複製代碼
void buffer_init(void) {
struct buffer_head * h = start_buffer;
void * b = (void *) BUFFER_END;
int i;
while ( (b -= BLOCK_SIZE) >= ((void *) (h+1)) ) {
h->b_dev = 0;
h->b_dirt = 0;
h->b_count = 0;
h->b_lock = 0;
h->b_uptodate = 0;
h->b_wait = NULL;
h->b_next = NULL;
h->b_prev = NULL;
h->b_data = (char *) b;
h->b_prev_free = h-1;
h->b_next_free = h+1;
h++;
NR_BUFFERS++;
if (b == (void *) 0x100000)
b = (void *) 0xA0000;
}
h--;
free_list = start_buffer;
free_list->b_prev_free = h;
h->b_next_free = free_list;
for (i=0;i<NR_HASH;i++)
hash_table[i]=NULL;
}
複製代碼
#define COPYBLK(from, to) \
__asm__("cld\n\t" \
"rep\n\t" \
"movsl\n\t"\
::"c" (BLOCK_SIZE/4), "S" (from), "D" (to) \
: "cx", "di","si")
)
複製代碼