矩陣優化能夠常常利用在遞推式中。ios
首先了解一下矩陣乘法的法則。優化
\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\) \(\times\) \(\begin{bmatrix}e&f\\g&h\end{bmatrix}\) \(=\) \(\begin{bmatrix} a \times e + b \times g & a \times f + b \times h \\ c \times e + d \times g & c \times f + d \times h \end{bmatrix}\)ui
這就貌似很是簡單了。spa
看一個例題,斐波那契數列不一樣於通常的斐波那契數列,\(n\)在\(long\) \(long\)以內,因此\(O(n)\)絕對會超時,這是須要矩陣快速冪,複雜度是\(O(3^3logn)\) \(=\) \(O(9log n)\),忽略常數,那麼複雜度就是\(O(logn)\)code
咱們定義一個矩陣等式,而後去求問號矩陣get
\(\begin{bmatrix} f[i+1] & f[i]\end{bmatrix}\) \(\times\) \(\begin{bmatrix}? \end{bmatrix}\) \(=\) \(\begin{bmatrix}f[i+2] & f[i+1] \end{bmatrix}\)string
\(f[i+2] = f[i] + f[i+1]\)io
構造的\(?\)號矩陣就是模板
\(\begin{bmatrix} 1 & 1 \\ 1 & 0\end{bmatrix}\)class
帶回檢驗
\(\begin{bmatrix}f[i+1] & f[i] \\ 0 & 0\end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & 0\end{bmatrix} = \begin{bmatrix}f[i+1] \times 1 + f[i] \times 1 & f[i+1] \times 1 + f[i] \times 0 \\ 0 \times 1 + 0 \times 1 & 0 \times 1 + 0 \times 0 \end{bmatrix}\)
上式化簡爲
\(\begin{bmatrix}f[i+2] & f[i+1] \\ 0 & 0\end{bmatrix} = \begin{bmatrix}f[i+2] & f[i+1]\end{bmatrix}\)
因此成立.
矩陣快速冪模板代碼就是
struct Mat { int a[3][3]; Mat() {memset(a,0,sizeof a);} inline void build() { memset(a,0,sizeof a); for(re int i = 1 ; i <= 2 ; ++ i) a[i][i]=1; } }; Mat operator*(Mat &a,Mat &b) { Mat c; for(re int k = 1 ; k <= 2 ; ++ k) for(re int i = 1 ; i <= 2 ; ++ i) for(re int j = 1 ; j <= 2 ; ++ j) c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j]%mod)%mod; return c; } Mat quick_Mat(int x) { Mat ans;ans.build(); while(x) { if((x&1)==1) ans = ans * a; a = a * a; x >>= 1; } return ans; }
例題代碼是
#include <cstdio> #include <iostream> #include <cmath> #include <cstring> #include <queue> #include <stack> #define re register #define Max 200000012 #define int long long int n; const int mod=1000000007; struct Mat { int a[3][3]; Mat() {memset(a,0,sizeof a);} inline void build() { memset(a,0,sizeof a); for(re int i = 1 ; i <= 2 ; ++ i) a[i][i]=1; } }; Mat operator*(Mat &a,Mat &b) { Mat c; for(re int k = 1 ; k <= 2 ; ++ k) for(re int i = 1 ; i <= 2 ; ++ i) for(re int j = 1 ; j <= 2 ; ++ j) c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j]%mod)%mod; return c; } Mat a; Mat quick_Mat(int x) { Mat ans;ans.build(); while(x) { if((x&1)==1) ans = ans * a; a = a * a; x >>= 1; } return ans; } signed main() { scanf("%lld",&n); a.a[1][1]=1;a.a[1][2]=1; a.a[2][1]=1;Mat b; b.a[1][1]=1;b.a[2][1]=1; if(n>=1 && n<=2) { printf("1");return 0; } Mat ans=quick_Mat(n-2); ans=ans*b; printf("%lld",ans.a[1][1]); return 0; }