說明:本文分爲三部份內容,第一部分爲一道百度面試題Top K算法的詳解;第二部分爲關於Hash表算法的詳細闡述;第三部分爲打造一個最快的Hash表算法。linux
第一部分:Top K 算法詳解git
問題描述程序員
百度面試題:github
搜索引擎會經過日誌文件把用戶每次檢索使用的全部檢索串都記錄下來,每一個查詢串的長度爲1-255字節。
假設目前有一千萬個記錄(這些查詢串的重複度比較高,雖然總數是1千萬,但若是除去重複後,不超過3百萬個。一個查詢串的重複度越高,說明查詢它的用戶越多,也就是越熱門。),請你統計最熱門的10個查詢串,要求使用的內存不能超過1G。web
必備知識:面試
什麼是哈希表?算法
哈希表(Hash table,也叫散列表),是根據關鍵碼值(Key value)而直接進行訪問的數據結構。也就是說,它經過把關鍵碼值映射到表中一個位置來訪問記錄,以加快查找的速度。這個映射函數叫作散列函數,存放記錄的數組叫作散列表。數組
哈希表的作法其實很簡單,就是把Key經過一個固定的算法函數既所謂的哈希函數轉換成一個整型數字,而後就將該數字對數組長度進行取餘,取餘結果就看成數組的下標,將value存儲在以該數字爲下標的數組空間裏。安全
而當使用哈希表進行查詢的時候,就是再次使用哈希函數將key轉換爲對應的數組下標,並定位到該空間獲取value,如此一來,就能夠充分利用到數組的定位性能進行數據定位(文章第2、三部分,會針對Hash表詳細闡述)。數據結構
問題解析:
要統計最熱門查詢,首先就是要統計每一個Query出現的次數,而後根據統計結果,找出Top 10。因此咱們能夠基於這個思路分兩步來設計該算法。
即,此問題的解決分爲如下倆個步驟:
第一步:Query統計
Query統計有如下倆個方法,可供選擇:
一、直接排序法
首先咱們最早想到的的算法就是排序了,首先對這個日誌裏面的全部Query都進行排序,而後再遍歷排好序的Query,統計每一個Query出現的次數了。
可是題目中有明確要求,那就是內存不能超過1G,一千萬條記錄,每條記錄是255Byte,很顯然要佔據2.375G內存,這個條件就不知足要求了。
讓咱們回憶一下數據結構課程上的內容,當數據量比較大並且內存沒法裝下的時候,咱們能夠採用外排序的方法來進行排序,這裏咱們能夠採用歸併排序,由於歸併排序有一個比較好的時間複雜度O(NlgN)。
排完序以後咱們再對已經有序的Query文件進行遍歷,統計每一個Query出現的次數,再次寫入文件中。
綜合分析一下,排序的時間複雜度是O(NlgN),而遍歷的時間複雜度是O(N),所以該算法的整體時間複雜度就是O(N+NlgN)=O(NlgN)。
二、Hash Table法
在第1個方法中,咱們採用了排序的辦法來統計每一個Query出現的次數,時間複雜度是NlgN,那麼能不能有更好的方法來存儲,而時間複雜度更低呢?
題目中說明了,雖然有一千萬個Query,可是因爲重複度比較高,所以事實上只有300萬的Query,每一個Query255Byte,所以咱們能夠考慮把他們都放進內存中去,而如今只是須要一個合適的數據結構,在這裏,Hash Table絕對是咱們優先的選擇,由於Hash Table的查詢速度很是的快,幾乎是O(1)的時間複雜度。
那麼,咱們的算法就有了:維護一個Key爲Query字串,Value爲該Query出現次數的HashTable,每次讀取一個Query,若是該字串不在Table中,那麼加入該字串,而且將Value值設爲1;若是該字串在Table中,那麼將該字串的計數加一便可。最終咱們在O(N)的時間複雜度內完成了對該海量數據的處理。
本方法相比算法1:在時間複雜度上提升了一個數量級,爲O(N),但不只僅是時間複雜度上的優化,該方法只須要IO數據文件一次,而算法1的IO次數較多的,所以該算法2比算法1在工程上有更好的可操做性。
第二步:找出Top 10
算法一:普通排序
我想對於排序算法你們都已經不陌生了,這裏不在贅述,咱們要注意的是排序算法的時間複雜度是NlgN,在本題目中,三百萬條記錄,用1G內存是能夠存下的。
算法二:部分排序
題目要求是求出Top 10,所以咱們沒有必要對全部的Query都進行排序,咱們只須要維護一個10個大小的數組,初始化放入10個Query,按照每一個Query的統計次數由大到小排序,而後遍歷這300萬條記錄,每讀一條記錄就和數組最後一個Query對比,若是小於這個Query,那麼繼續遍歷,不然,將數組中最後一條數據淘汰,加入當前的Query。最後當全部的數據都遍歷完畢以後,那麼這個數組中的10個Query即是咱們要找的Top10了。
不難分析出,這樣,算法的最壞時間複雜度是N*K, 其中K是指top多少。
算法三:堆
在算法二中,咱們已經將時間複雜度由NlogN優化到NK,不得不說這是一個比較大的改進了,但是有沒有更好的辦法呢?
分析一下,在算法二中,每次比較完成以後,須要的操做複雜度都是K,由於要把元素插入到一個線性表之中,並且採用的是順序比較。這裏咱們注意一下,該數組是有序的,一次咱們每次查找的時候能夠採用二分的方法查找,這樣操做的複雜度就降到了logK,但是,隨之而來的問題就是數據移動,由於移動數據次數增多了。不過,這個算法仍是比算法二有了改進。
基於以上的分析,咱們想一想,有沒有一種既能快速查找,又能快速移動元素的數據結構呢?回答是確定的,那就是堆。
藉助堆結構,咱們能夠在log量級的時間內查找和調整/移動。所以到這裏,咱們的算法能夠改進爲這樣,維護一個K(該題目中是10)大小的小根堆,而後遍歷300萬的Query,分別和根元素進行對比。
思想與上述算法二一致,只是算法在算法三,咱們採用了最小堆這種數據結構代替數組,把查找目標元素的時間複雜度有O(K)降到了O(logK)。
那麼這樣,採用堆數據結構,算法三,最終的時間複雜度就降到了N‘logK,和算法二相比,又有了比較大的改進。
總結:
至此,算法就徹底結束了,通過上述第一步、先用Hash表統計每一個Query出現的次數,O(N);而後第二步、採用堆數據結構找出Top 10,N*O(logK)。因此,咱們最終的時間複雜度是:O(N) + N’*O(logK)。(N爲1000萬,N’爲300萬)。若是各位有什麼更好的算法,歡迎留言評論。第一部分,完。
第二部分、Hash表 算法的詳細解析
什麼是Hash
Hash,通常翻譯作「散列」,也有直接音譯爲「哈希」的,就是把任意長度的輸入(又叫作預映射, pre-image),經過散列算法,變換成固定長度的輸出,該輸出就是散列值。這種轉換是一種壓縮映射,也就是,散列值的空間一般遠小於輸入的空間,不一樣的輸入可能會散列成相同的輸出,而不可能從散列值來惟一的肯定輸入值。簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。
HASH主要用於信息安全領域中加密算法,它把一些不一樣長度的信息轉化成雜亂的128位的編碼,這些編碼值叫作HASH值. 也能夠說,hash就是找到一種數據內容和數據存放地址之間的映射關係。
數組的特色是:尋址容易,插入和刪除困難;而鏈表的特色是:尋址困難,插入和刪除容易。那麼咱們能不能綜合二者的特性,作出一種尋址容易,插入刪除也容易的數據結構?答案是確定的,這就是咱們要提起的哈希表,哈希表有多種不一樣的實現方法,我接下來解釋的是最經常使用的一種方法——拉鍊法,咱們能夠理解爲「鏈表的數組」,如圖:
左邊很明顯是個數組,數組的每一個成員包括一個指針,指向一個鏈表的頭,固然這個鏈表可能爲空,也可能元素不少。咱們根據元素的一些特徵把元素分配到不一樣的鏈表中去,也是根據這些特徵,找到正確的鏈表,再從鏈表中找出這個元素。
元素特徵轉變爲數組下標的方法就是散列法。散列法固然不止一種,下面列出三種比較經常使用的:
1,除法散列法
最直觀的一種,上圖使用的就是這種散列法,公式:
index = value % 16
學過彙編的都知道,求模數實際上是經過一個除法運算獲得的,因此叫「除法散列法」。
2,平方散列法
求index是很是頻繁的操做,而乘法的運算要比除法來得省時(對如今的CPU來講,估計咱們感受不出來),因此咱們考慮把除法換成乘法和一個位移操做。公式:
index = (value * value) >> 28 (右移,除以2^28。記法:左移變大,是乘。右移變小,是除。)
若是數值分配比較均勻的話這種方法能獲得不錯的結果,但我上面畫的那個圖的各個元素的值算出來的index都是0——很是失敗。也許你還有個問題,value若是很大,value * value不會溢出嗎?答案是會的,但咱們這個乘法不關心溢出,由於咱們根本不是爲了獲取相乘結果,而是爲了獲取index。
3,斐波那契(Fibonacci)散列法
平方散列法的缺點是顯而易見的,因此咱們能不能找出一個理想的乘數,而不是拿value自己看成乘數呢?答案是確定的。
1,對於16位整數而言,這個乘數是40503
2,對於32位整數而言,這個乘數是2654435769
3,對於64位整數而言,這個乘數是11400714819323198485
這幾個「理想乘數」是如何得出來的呢?這跟一個法則有關,叫黃金分割法則,而描述黃金分割法則的最經典表達式無疑就是著名的斐波那契數列,即如此形式的序列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,…。另外,斐波那契數列的值和太陽系八大行星的軌道半徑的比例出奇吻合。
對咱們常見的32位整數而言,公式:
index = (value * 2654435769) >> 28
若是用這種斐波那契散列法的話,那上面的圖就變成這樣了:
很明顯,用斐波那契散列法調整以後要比原來的取摸散列法好不少。
適用範圍
快速查找,刪除的基本數據結構,一般須要總數據量能夠放入內存。
基本原理及要點
hash函數選擇,針對字符串,整數,排列,具體相應的hash方法。
碰撞處理,一種是open hashing,也稱爲拉鍊法;另外一種就是closed hashing,也稱開地址法,opened addressing。
擴展
d-left hashing中的d是多個的意思,咱們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分紅長度相等的兩半,分別叫作T1和T2,給T1和T2分別配備一個哈希函數,h1和h2。在存儲一個新的key時,同 時用兩個哈希函數進行計算,得出兩個地址h1[key]和h2[key]。這時須要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪個 位置已經存儲的(有碰撞的)key比較多,而後將新key存儲在負載少的位置。若是兩邊同樣多,好比兩個位置都爲空或者都存儲了一個key,就把新key 存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。
問題實例(海量數據處理)
咱們知道hash 表在海量數據處理中有着普遍的應用,下面,請看另外一道百度面試題:
題目:海量日誌數據,提取出某日訪問百度次數最多的那個IP。
方案:IP的數目仍是有限的,最多2^32個,因此能夠考慮使用hash將ip直接存入內存,而後進行統計。
第三部分、最快的Hash表算法
接下來,我們來具體分析一下一個最快的Hasb表算法。
咱們由一個簡單的問題逐步入手:有一個龐大的字符串數組,而後給你一個單獨的字符串,讓你從這個數組中查找是否有這個字符串並找到它,你會怎麼作?有一個方法最簡單,老老實實從頭查到尾,一個一個比較,直到找到爲止,我想只要學過程序設計的人都能把這樣一個程序做出來,但要是有程序員把這樣的程序交給用戶,我只能用無語來評價,或許它真的能工做,但…也只能如此了。
最合適的算法天然是使用HashTable(哈希表),先介紹介紹其中的基本知識,所謂Hash,通常是一個整數,經過某種算法,能夠把一個字符串」壓縮」 成一個整數。固然,不管如何,一個32位整數是沒法對應回一個字符串的,但在程序中,兩個字符串計算出的Hash值相等的可能很是小,下面看看在MPQ中的Hash算法:
函數1、如下的函數生成一個長度爲0x500(合10進制數:1280)的cryptTable[0x500]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
void prepareCryptTable()
{
unsigned long seed = 0x00100001, index1 = 0, index2 = 0, i;
for( index1 = 0; index1 < 0x100; index1++ )
{
for( index2 = index1, i = 0; i < 5; i++, index2 += 0x100 )
{
unsigned long temp1, temp2;
seed = (seed * 125 + 3) % 0x2AAAAB;
temp1 = (seed & 0xFFFF) << 0x10;
seed = (seed * 125 + 3) % 0x2AAAAB;
temp2 = (seed & 0xFFFF);
cryptTable[index2] = ( temp1 | temp2 );
}
}
}
|
函數2、如下函數計算lpszFileName 字符串的hash值,其中dwHashType 爲hash的類型,在下面的函數三、GetHashTablePos函數中調用此函數二,其能夠取的值爲0、一、2;該函數返回lpszFileName 字符串的hash值:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
unsigned long <strong>HashString</strong>( char *lpszFileName, unsigned long dwHashType )
{
unsigned char *key = (unsigned char *)lpszFileName;
unsigned long seed1 = 0x7FED7FED;
unsigned long seed2 = 0xEEEEEEEE;
int ch;
while( *key != 0 )
{
ch = toupper(*key++);
seed1 = cryptTable[(dwHashType &lt;&lt; 8) + ch] ^ (seed1 + seed2);
seed2 = ch + seed1 + seed2 + (seed2 &lt;&lt; 5) + 3;
}
return seed1;
}
|
Blizzard的這個算法是很是高效的,被稱爲」One-Way Hash」( A one-way hash is a an algorithm that is constructed in such a way that deriving the original string (set of strings, actually) is virtually impossible)。舉個例子,字符串」unitneutralacritter.grp」經過這個算法獲得的結果是0xA26067F3。
是否是把第一個算法改進一下,改爲逐個比較字符串的Hash值就能夠了呢,答案是,遠遠不夠,要想獲得最快的算法,就不能進行逐個的比較,一般是構造一個哈希表(Hash Table)來解決問題,哈希表是一個大數組,這個數組的容量根據程序的要求來定義,例如1024,每個Hash值經過取模運算 (mod) 對應到數組中的一個位置,這樣,只要比較這個字符串的哈希值對應的位置有沒有被佔用,就能夠獲得最後的結果了,想一想這是什麼速度?是的,是最快的O(1),如今仔細看看這個算法吧:
1
2
3
4
5
6
7
|
typedef struct
{
int nHashA;
int nHashB;
char bExists;
......
} SOMESTRUCTRUE;
|
一種可能的結構體定義?
函數3、下述函數爲在Hash表中查找是否存在目標字符串,有則返回要查找字符串的Hash值,無則,return -1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
int <strong>GetHashTablePos</strong>( har *lpszString, SOMESTRUCTURE *lpTable )
//lpszString要在Hash表中查找的字符串,lpTable爲存儲字符串Hash值的Hash表。
{
int nHash = HashString(lpszString); //調用上述函數二,返回要查找字符串lpszString的Hash值。
int nHashPos = nHash % nTableSize;
if ( lpTable[nHashPos].bExists &amp;&amp; !strcmp( lpTable[nHashPos].pString, lpszString ) )
{ //若是找到的Hash值在表中存在,且要查找的字符串與表中對應位置的字符串相同,
return nHashPos; //則返回上述調用函數二後,找到的Hash值
}
else
{
return -1;
}
}
|
看到此,我想你們都在想一個很嚴重的問題:「若是兩個字符串在哈希表中對應的位置相同怎麼辦?」,畢竟一個數組容量是有限的,這種可能性很大。解決該問題的方法不少,我首先想到的就是用「鏈表」,感謝大學裏學的數據結構教會了這個百試百靈的法寶,我遇到的不少算法均可以轉化成鏈表來解決,只要在哈希表的每一個入口掛一個鏈表,保存全部對應的字符串就OK了。事情到此彷佛有了完美的結局,若是是把問題獨自交給我解決,此時我可能就要開始定義數據結構而後寫代碼了。
然而Blizzard的程序員使用的方法則是更精妙的方法。基本原理就是:他們在哈希表中不是用一個哈希值而是用三個哈希值來校驗字符串。
MPQ使用文件名哈希表來跟蹤內部的全部文件。可是這個表的格式與正常的哈希表有一些不一樣。首先,它沒有使用哈希做爲下標,把實際的文件名存儲在表中用於驗證,實際上它根本就沒有存儲文件名。而是使用了3種不一樣的哈希:一個用於哈希表的下標,兩個用於驗證。這兩個驗證哈希替代了實際文件名。
固然了,這樣仍然會出現2個不一樣的文件名哈希到3個一樣的哈希。可是這種狀況發生的機率平均是:1:18889465931478580854784,這個機率對於任何人來講應該都是足夠小的。如今再回到數據結構上,Blizzard使用的哈希表沒有使用鏈表,而採用」順延」的方式來解決問題,看看這個算法:
函數4、lpszString 爲要在hash表中查找的字符串;lpTable 爲存儲字符串hash值的hash表;nTableSize 爲hash表的長度:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
int <strong>GetHashTablePos</strong>( char *lpszString, MPQHASHTABLE *lpTable, int nTableSize )
{
const int HASH_OFFSET = 0, HASH_A = 1, HASH_B = 2;
int nHash = HashString( lpszString, HASH_OFFSET );
int nHashA = HashString( lpszString, HASH_A );
int nHashB = HashString( lpszString, HASH_B );
int nHashStart = nHash % nTableSize;
int nHashPos = nHashStart;
while ( lpTable[nHashPos].bExists )
{
/*若是僅僅是判斷在該表中時候存在這個字符串,就比較這兩個hash值就能夠了,不用對
*結構體中的字符串進行比較。這樣會加快運行的速度?減小hash表佔用的空間?這種
*方法通常應用在什麼場合?*/
if ( lpTable[nHashPos].nHashA == nHashA
&amp;&amp; lpTable[nHashPos].nHashB == nHashB )
{
return nHashPos;
}
else
{
nHashPos = (nHashPos + 1) % nTableSize;
}
if (nHashPos == nHashStart)
break;
}
return -1;
}
|
上述程序解釋:
1.計算出字符串的三個哈希值(一個用來肯定位置,另外兩個用來校驗)
2. 察看哈希表中的這個位置
3. 哈希表中這個位置爲空嗎?若是爲空,則確定該字符串不存在,返回-1。
4. 若是存在,則檢查其餘兩個哈希值是否也匹配,若是匹配,則表示找到了該字符串,返回其Hash值。
5. 移到下一個位置,若是已經移到了表的末尾,則反繞到表的開始位置起繼續查詢
6. 看看是否是又回到了原來的位置,若是是,則返回沒找到
7. 回到3
ok,這就是本文中所說的最快的Hash表算法。什麼?不夠快?:D。歡迎,各位批評指正。
——————————————–
補充一、一個簡單的hash函數:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
/*key爲一個字符串,nTableLength爲哈希表的長度
*該函數獲得的hash值分佈比較均勻*/
unsigned long getHashIndex( const char *key, int nTableLength )
{
unsigned long nHash = 0;
while (*key)
{
nHash = (nHash<<5) + nHash + *key++;
}
return ( nHash % nTableLength );
}
|
補充二、一個完整測試程序:
哈希表的數組是定長的,若是太大,則浪費,若是過小,體現不出效率。合適的數組大小是哈希表的性能的關鍵。哈希表的尺寸最好是一個質數。固然,根據不一樣的數據量,會有不一樣的哈希表的大小。對於數據量時多時少的應用,最好的設計是使用動態可變尺寸的哈希表,那麼若是你發現哈希表尺寸過小了,好比其中的元素是哈希表尺寸的2倍時,咱們就須要擴大哈希表尺寸,通常是擴大一倍。
下面是哈希表尺寸大小的可能取值:
17, 37, 79, 163, 331,
673, 1361, 2729, 5471, 10949,
21911, 43853, 87719, 175447, 350899,
701819, 1403641, 2807303, 5614657, 11229331,
22458671, 44917381, 89834777, 179669557, 359339171,
718678369, 1437356741, 2147483647
如下爲該程序的完整源碼,已在linux下測試經過:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
#include <stdio.h>
#include <ctype.h> //多謝citylove指正。
//crytTable[]裏面保存的是HashString函數裏面將會用到的一些數據,在prepareCryptTable
//函數裏面初始化
unsigned long cryptTable[0x500];
//如下的函數生成一個長度爲0x500(合10進制數:1280)的cryptTable[0x500]
void prepareCryptTable()
{
unsigned long seed = 0x00100001, index1 = 0, index2 = 0, i;
for( index1 = 0; index1 < 0x100; index1++ )
{
for( index2 = index1, i = 0; i < 5; i++, index2 += 0x100 )
{
unsigned long temp1, temp2;
seed = (seed * 125 + 3) % 0x2AAAAB;
temp1 = (seed & 0xFFFF) << 0x10;
seed = (seed * 125 + 3) % 0x2AAAAB;
temp2 = (seed & 0xFFFF);
cryptTable[index2] = ( temp1 | temp2 );
}
}
}
//如下函數計算lpszFileName 字符串的hash值,其中dwHashType 爲hash的類型,
//在下面GetHashTablePos函數裏面調用本函數,其能夠取的值爲0、一、2;該函數
//返回lpszFileName 字符串的hash值;
unsigned long HashString( char *lpszFileName, unsigned long dwHashType )
{
unsigned char *key = (unsigned char *)lpszFileName;
unsigned long seed1 = 0x7FED7FED;
unsigned long seed2 = 0xEEEEEEEE;
int ch;
while( *key != 0 )
{
ch = toupper(*key++);
seed1 = cryptTable[(dwHashType << 8) + ch] ^ (seed1 + seed2);
seed2 = ch + seed1 + seed2 + (seed2 << 5) + 3;
}
return seed1;
}
//在main中測試argv[1]的三個hash值:
//./hash "arr/units.dat"
//./hash "unit/neutral/acritter.grp"
int main( int argc, char **argv )
{
unsigned long ulHashValue;
int i = 0;
if ( argc != 2 )
{
printf("please input two arguments/n");
return -1;
}
/*初始化數組:crytTable[0x500]*/
prepareCryptTable();
/*打印數組crytTable[0x500]裏面的值*/
for ( ; i < 0x500; i++ )
{
if ( i % 10 == 0 )
{
printf("/n");
}
printf("%-12X", cryptTable[i] );
}
ulHashValue = HashString( argv[1], 0 );
printf("/n----%X ----/n", ulHashValue );
ulHashValue = HashString( argv[1], 1 );
printf("----%X ----/n", ulHashValue );
ulHashValue = HashString( argv[1], 2 );
printf("----%X ----/n", ulHashValue );
return 0;
|