dpdk-rte_mbuf數據結構學習

搞網絡不知道dpdk。。。不合適。。。html

搞dpdk不知道rte_mbuf。。。不合適。。。數組

因此,搞搞搞。。。網絡

上源碼!!!數據結構

//關於dpdk rte_mbuf數據結構的學習

/* define a set of marker types that can be used to refer to set points in the
 * mbuf */
/* 定義一組可用於引用 mbuf 中的設置點的標記類型*/
__extension__
typedef void    *MARKER[0];   /**< generic marker for a point in a structure */
__extension__
typedef uint8_t  MARKER8[0];  /**< generic marker with 1B alignment */
__extension__
typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
                               * with a single assignment */


/**
 * The generic rte_mbuf, containing a packet mbuf.
 */
struct rte_mbuf {
	MARKER cacheline0;			/* 柔性數組,標記開頭 */

	void *buf_addr;           /**< Virtual address of segment buffer. */
	/**
	 * Physical address of segment buffer.
	 * Force alignment to 8-bytes, so as to ensure we have the exact
	 * same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
	 * working on vector drivers easier.
	 */
	RTE_STD_C11
	union {
		rte_iova_t buf_iova;
		rte_iova_t buf_physaddr; /**< deprecated */
	} __rte_aligned(sizeof(rte_iova_t));

	/* next 8 bytes are initialised on RX descriptor rearm */
	MARKER64 rearm_data;
	uint16_t data_off;

	/**
	 * Reference counter. Its size should at least equal to the size
	 * of port field (16 bits), to support zero-copy broadcast.
	 * It should only be accessed using the following functions:
	 * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
	 * rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
	 * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
	 * config option.
	 */
	RTE_STD_C11
	union {
		rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
		uint16_t refcnt;              /**< Non-atomically accessed refcnt */
	};
	uint16_t nb_segs;         /**< Number of segments. */

	/** Input port (16 bits to support more than 256 virtual ports). */
	uint16_t port;

	uint64_t ol_flags;        /**< Offload features. */

	/* remaining bytes are set on RX when pulling packet from descriptor */
	MARKER rx_descriptor_fields1;

	/*
	 * The packet type, which is the combination of outer/inner L2, L3, L4
	 * and tunnel types. The packet_type is about data really present in the
	 * mbuf. Example: if vlan stripping is enabled, a received vlan packet
	 * would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
	 * vlan is stripped from the data.
	 */
	RTE_STD_C11
	union {
		uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
		struct {
			uint32_t l2_type:4; /**< (Outer) L2 type. */
			uint32_t l3_type:4; /**< (Outer) L3 type. */
			uint32_t l4_type:4; /**< (Outer) L4 type. */
			uint32_t tun_type:4; /**< Tunnel type. */
			RTE_STD_C11
			union {
				uint8_t inner_esp_next_proto;
				/**< ESP next protocol type, valid if
				 * RTE_PTYPE_TUNNEL_ESP tunnel type is set
				 * on both Tx and Rx.
				 */
				__extension__
				struct {
					uint8_t inner_l2_type:4;
					/**< Inner L2 type. */
					uint8_t inner_l3_type:4;
					/**< Inner L3 type. */
				};
			};
			uint32_t inner_l4_type:4; /**< Inner L4 type. */
		};
	};

	uint32_t pkt_len;         /**< Total pkt len: sum of all segments. */
	uint16_t data_len;        /**< Amount of data in segment buffer. */
	/** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
	uint16_t vlan_tci;

	union {
		uint32_t rss;     /**< RSS hash result if RSS enabled */
		struct {
			RTE_STD_C11
			union {
				struct {
					uint16_t hash;
					uint16_t id;
				};
				uint32_t lo;
				/**< Second 4 flexible bytes */
			};
			uint32_t hi;
			/**< First 4 flexible bytes or FD ID, dependent on
			     PKT_RX_FDIR_* flag in ol_flags. */
		} fdir;           /**< Filter identifier if FDIR enabled */
		struct {
			uint32_t lo;
			uint32_t hi;
		} sched;          /**< Hierarchical scheduler */
		uint32_t usr;	  /**< User defined tags. See rte_distributor_process() */
	} hash;                   /**< hash information */

	/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
	uint16_t vlan_tci_outer;

	uint16_t buf_len;         /**< Length of segment buffer. */

	/** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
	 * are not normalized but are always the same for a given port.
	 */
	uint64_t timestamp;

	/* second cache line - fields only used in slow path or on TX */
	MARKER cacheline1 __rte_cache_min_aligned;

	RTE_STD_C11
	union {
		void *userdata;   /**< Can be used for external metadata */
		uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
	};

	struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
	struct rte_mbuf *next;    /**< Next segment of scattered packet. */

	/* fields to support TX offloads */
	RTE_STD_C11
	union {
		uint64_t tx_offload;       /**< combined for easy fetch */
		__extension__
		struct {
			uint64_t l2_len:7;
			/**< L2 (MAC) Header Length for non-tunneling pkt.
			 * Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
			 */
			uint64_t l3_len:9; /**< L3 (IP) Header Length. */
			uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
			uint64_t tso_segsz:16; /**< TCP TSO segment size */

			/* fields for TX offloading of tunnels */
			uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
			uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */

			/* uint64_t unused:8; */
		};
	};

	/** Size of the application private data. In case of an indirect
	 * mbuf, it stores the direct mbuf private data size. */
	uint16_t priv_size;

	/** Timesync flags for use with IEEE1588. */
	uint16_t timesync;

	/** Sequence number. See also rte_reorder_insert(). */
	uint32_t seqn;

}

 

好傢伙,果真mbuf,大名鼎鼎。下面分別對每一個字段進行學習解釋。app

 

下面按照出現順序對每一個字段進行解釋。ide

MARKER cacheline0;

typedef void    *MARKER[0];   /**< generic marker for a point in a structure */

查看typedef,發現這是一個柔性數組。長度爲0,因此這裏在編譯時是不佔用內存滴。只是一個標記嘍。MARKER嘛。函數

 

void *buf_addr;           /**< Virtual address of segment buffer. */

有圖就容易解釋了,一些指針、成員或函數結果的內容在下表中列出,mbuf指針簡寫爲m性能

m 首部,即mbuf結構體
m->buf_addr headroom起始地址
m->data_off data起始地址相對於buf_addr的偏移
m->buf_len mbuf和priv以後內存的長度,包含headroom
m->pkt_len 整個mbuf鏈的data總長度
m->data_len 實際data的長度
m->buf_addr+m->data_off 實際data的起始地址
rte_pktmbuf_mtod(m) 同上
rte_pktmbuf_data_len(m) 同m->data_len
rte_pktmbuf_pkt_len 同m->pkt_len
rte_pktmbuf_data_room_size 同m->buf_len
rte_pktmbuf_headroom headroom長度
rte_pktmbuf_tailroom 尾部剩餘空間長度

綜合圖片解釋以及上述表格的備註。這裏buf_addr就是rte_mbuf結構體尾部,headroom起始地址。學習

/**
	 * Physical address of segment buffer.
	 * Force alignment to 8-bytes, so as to ensure we have the exact
	 * same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
	 * working on vector drivers easier.
	 */
	RTE_STD_C11
	union {
		rte_iova_t buf_iova;
		rte_iova_t buf_physaddr; /**< deprecated */
	} __rte_aligned(sizeof(rte_iova_t));

段緩衝區的物理地址。 強制8字節對齊,保證在32位和64位有相同的cacheline0。這塊暫時無需關注。fetch

/* next 8 bytes are initialised on RX descriptor rearm */
	MARKER64 rearm_data;

接下來的 8 個字節在 RX 描述符重裝時初始化 。

uint16_t data_off;

data起始地址相對於buf_addr的偏移。要獲取data的位置,m->buf_addr + m->data_off ,就是對應的data的實際指針。通常中間間隔是一個headroom的大小。

 

/**
	 * Reference counter. Its size should at least equal to the size
	 * of port field (16 bits), to support zero-copy broadcast.
	 * It should only be accessed using the following functions:
	 * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
	 * rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
	 * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
	 * config option.
	 */
	RTE_STD_C11
	union {
		rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
		uint16_t refcnt;              /**< Non-atomically accessed refcnt */
	};

引用計數。這裏用union實現了原子訪問和非原子訪問2種。計數的規格至少等於端口字段的大小16bits,(用來支持零拷貝廣播?不明白)。

 

uint16_t nb_segs;         /**< Number of segments. */

分片數。

 

/** Input port (16 bits to support more than 256 virtual ports). */
	uint16_t port;

入接口id號。

 

uint64_t ol_flags;        /**< Offload features. */

offload特性標記。

offload特性,主要是指將本來在協議棧中進行的IP分片、TCP分段、重組、checksum校驗等操做,轉移到網卡硬件中進行,下降系統CPU的消耗,提升處理性能。

 

/* remaining bytes are set on RX when pulling packet from descriptor */
	MARKER rx_descriptor_fields1;

從描述符中提取數據包時,剩餘字節設置在 RX 上。標記使用,MARKER。。。

 

/*
	 * The packet type, which is the combination of outer/inner L2, L3, L4
	 * and tunnel types. The packet_type is about data really present in the
	 * mbuf. Example: if vlan stripping is enabled, a received vlan packet
	 * would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
	 * vlan is stripped from the data.
	 */
	 /* 數據包類型,它是外部/內部 L二、L三、L4 和隧道類型的組合。 
	  * packet_type 是關於 mbuf 中真正存在的數據。 
	  * 若是啓用了 vlan 剝離,則接收到的 vlan 數據包將具備 RTE_PTYPE_L2_ETHER 
	  * 而不是 RTE_PTYPE_L2_VLAN,由於 vlan 已從數據中剝離。 
	  */
	RTE_STD_C11
	union {
		uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
		struct {
			uint32_t l2_type:4; /**< (Outer) L2 type. */
			uint32_t l3_type:4; /**< (Outer) L3 type. */
			uint32_t l4_type:4; /**< (Outer) L4 type. */
			uint32_t tun_type:4; /**< Tunnel type. */
			RTE_STD_C11
			union {
				uint8_t inner_esp_next_proto;
				/**< ESP next protocol type, valid if
				 * RTE_PTYPE_TUNNEL_ESP tunnel type is set
				 * on both Tx and Rx.
				 */
				__extension__
				struct {
					uint8_t inner_l2_type:4;
					/**< Inner L2 type. */
					uint8_t inner_l3_type:4;
					/**< Inner L3 type. */
				};
			};
			uint32_t inner_l4_type:4; /**< Inner L4 type. */
		};
	};

 

此數據結構比較清晰,無需多餘解釋。有一個疑問,這裏的inner && outer具體是什麼呢

 

 

uint32_t pkt_len;         /**< Total pkt len: sum of all segments. */
	uint16_t data_len;        /**< Amount of data in segment buffer. */

pkt_len,包括全部分片的長度。

data_len,當前的數據長度。若是沒有分片,pkt_len與data_len數值應該是相同的。也就是pkt_len >= data_len.

 

/** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
	uint16_t vlan_tci;

只有開啓了PKT_RX_VLAN_STRIPPED標記,此字段纔是有效的。vlan時使用,學習vlan時,須要關注此字段

 

union {
		uint32_t rss;     /**< RSS hash result if RSS enabled */
		struct {
			RTE_STD_C11
			union {
				struct {
					uint16_t hash;
					uint16_t id;
				};
				uint32_t lo;
				/**< Second 4 flexible bytes */
			};
			uint32_t hi;
			/**< First 4 flexible bytes or FD ID, dependent on
			     PKT_RX_FDIR_* flag in ol_flags. */
		} fdir;           /**< Filter identifier if FDIR enabled */
		struct {
			uint32_t lo;
			uint32_t hi;
		} sched;          /**< Hierarchical scheduler */
		uint32_t usr;	  /**< User defined tags. See rte_distributor_process() */
	} hash;                   /**< hash information */

哈希數據。這裏是一個union。當RSS開啓時,對應rss字段是哈希結果。學習RSS時,關注一下

 

/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
	uint16_t vlan_tci_outer;

 只有開啓了QINQ剝離時,此字段有效。外部vlan相關。

 

uint16_t buf_len;         /**< Length of segment buffer. */

mbuf和priv以後內存的長度,包含headroom。

/** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
	 * are not normalized but are always the same for a given port.
	 */
	uint64_t timestamp;

時間戳。PKT_RX_TIMESAMP開啓時,此字段有效。單位和時間參考未標準化,但對於給定端口始終相同。

/* second cache line - fields only used in slow path or on TX */
	MARKER cacheline1 __rte_cache_min_aligned;

第二個cacheline,這部份內容僅用在慢路或者發包流程中。

 

RTE_STD_C11
	union {
		void *userdata;   /**< Can be used for external metadata */
		uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
	};
//#define RTE_STD_C11 __extension__

__extension__字段用於消除編譯告警。

這裏是一個union,

在userdata指針總能夠用來存放額外的元數據。

udata64,能夠存放8字節的用戶數據。

 

struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */

標識本mbuf是從哪一個rte_mempool池子中申請到的。也就是該mbuf是哪一個rte_mempool池子的。

 

struct rte_mbuf *next;    /**< Next segment of scattered packet. */

在分片報文中,標記下一個報文的位置。

 

/* fields to support TX offloads */
	/* 用於支持發包硬件卸載的字段 */
	RTE_STD_C11
	union {
		uint64_t tx_offload;       /**< combined for easy fetch */
		/* tx_offload 組合起來,方便取用 */
		__extension__
		struct {
			uint64_t l2_len:7;
			/**< L2 (MAC) Header Length for non-tunneling pkt.
			 * Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
			 */
			uint64_t l3_len:9; /**< L3 (IP) Header Length. */
			uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
			uint64_t tso_segsz:16; /**< TCP TSO segment size */
			/* TSO(TCP Segment Offload)是一種利用網卡的少許處理能力,
			 下降CPU發送數據包負載的技術,須要網卡硬件及驅動的支持。 */

			/* fields for TX offloading of tunnels */
			uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
			uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */

			/* uint64_t unused:8; */
		};
	};

支持硬件發包卸載的字段內容。內部爲一個union。其中tx_offload字段是爲了容易獲取搞出來的。

 

/** Size of the application private data. In case of an indirect
	 * mbuf, it stores the direct mbuf private data size. */
	uint16_t priv_size;

應用程序私有數據的大小。 

在indirect mbuf 的狀況下,它存儲direct mbuf 私有數據大小。 關於direct mbuf與indirect mbuf的區別,參考連接

10. Mbuf Library — Data Plane Development Kit 21.08.0-rc1 documentation (dpdk.org)

 

/** Timesync flags for use with IEEE1588. */
	/* IEEE1588 協議,又稱 PTP( precise time protocol,精確時間協議),
	 * 能夠達到亞微秒級別時間同步精度,於 2002 年發佈 version 1,
	 * 2008 年發佈 version 2。 */
	uint16_t timesync;

時間同步。參考IEEE1588。

IEEE 1588_百度百科 (baidu.com)

 

/** Sequence number. See also rte_reorder_insert(). */
	uint32_t seqn;

序列號。這個是哪裏用到呢

 

 

rte_mbuf的數據結構學習完畢。有一些遺留的問題,後續來完善。

相關文章
相關標籤/搜索