Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.java
You have the following 3 operations permitted on a word:ui
Example 1:spa
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:code
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
提供三種操做:插入一個字符,刪除一個字符,替換一個字符,要求使用最少的操做將一個字符串轉變爲另外一個字符串。rem
動態規劃。\(dp[i][j]\)表示將\(S[0, i - 1]\)轉變爲\(T[0, j - 1]\)所需的最少操做數。每次比較S和T的最後一個字符,兩種狀況:字符串
\(S[i - 1] == T[j - 1]\)。說明只要將\(S[0, i - 2]\)轉變爲\(T[0, j - 2]\),有\(dp[i][j]=dp[i-1][j-1]\)it
\(S[i-1]\ !=\ T[j-1]\)。爲了使最後一位相同,有三種操做:io
取三種狀況中的最小值做爲\(dp[i][j]\)。class
class Solution { public int minDistance(String word1, String word2) { int len1 = word1.length(), len2 = word2.length(); int[][] dp = new int[len1 + 1][len2 + 1]; for (int i = 0; i <= len1; i++) dp[i][0] = i; for (int j = 0; j <= len2; j++) dp[0][j] = j; for (int i = 1; i <= len1; i++) { for (int j = 1; j <= len2; j++) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1; } } } return dp[len1][len2]; } }