0072. Edit Distance (H)

Edit Distance (H)

題目

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.java

You have the following 3 operations permitted on a word:ui

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:spa

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:code

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

題意

提供三種操做:插入一個字符,刪除一個字符,替換一個字符,要求使用最少的操做將一個字符串轉變爲另外一個字符串。rem

思路

動態規劃。\(dp[i][j]\)表示將\(S[0, i - 1]\)轉變爲\(T[0, j - 1]\)所需的最少操做數。每次比較S和T的最後一個字符,兩種狀況:字符串

  1. \(S[i - 1] == T[j - 1]\)。說明只要將\(S[0, i - 2]\)轉變爲\(T[0, j - 2]\),有\(dp[i][j]=dp[i-1][j-1]\)it

  2. \(S[i-1]\ !=\ T[j-1]\)。爲了使最後一位相同,有三種操做:io

    1. 將S的最後一位替換爲T的最後一位,有\(dp[i][j]=dp[i-1][j-1]+1\)
    2. 將S的最後一位刪去,有\(dp[i][j]=dp[i-1][j]+1\)
    3. 將T的最後一位插入到S的最後,有\(dp[i][j]=dp[i][j-1]+1\)

    取三種狀況中的最小值做爲\(dp[i][j]\)class


代碼實現

Java

class Solution {
    public int minDistance(String word1, String word2) {
        int len1 = word1.length(), len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];
        for (int i = 0; i <= len1; i++) dp[i][0] = i;
        for (int j = 0; j <= len2; j++) dp[0][j] = j;
        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                }
            }
        }
        return dp[len1][len2];
    }
}
相關文章
相關標籤/搜索