最短路徑算法總結(floyd,dijkstra,bellman-ford)

繼續複習數據結構和算法,總結一下求解最短路徑的一些算法。ios

弗洛伊德(floyd)算法

弗洛伊德算法是最容易理解的最短路徑算法,能夠求圖中任意兩點間的最短距離,但時間複雜度高達\(O(n^3)\),主要思想就是若是想縮短從一個點到另外一個點的距離,就必須藉助一箇中間點進行中轉,好比A點到B點藉助C點中轉的話AB的距離就能夠更新爲\(D(a,b)=Min(D(a,b),D(a,c)+D(c,b))\),這樣咱們用每個結點做爲中轉結點,嘗試對另每兩個結點進行距離更新,總共須要三層循環進行遍歷。c++

核心代碼以下,圖存儲在鄰接矩陣G中。算法

for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            for (int k = 0; k < n; k++)
            {
                G[j][k] = min(G[j][k], G[j][i] + G[i][k]);
            }
        }
    }

迪傑斯特拉(Dijkstra)算法

迪傑斯特拉算法是一種求解單源最短路徑的算法,給定一個結點,能夠求出圖上各個結點到該結點最短距離。數組

沒學過的話推薦看看這個視頻:https://www.bilibili.com/video/av21376839?p=13,從8分鐘開始。看完以後基本上就明白了Dijkstra算法的運行過程。總結一下就是不斷尋找離源點最近的點並將其做爲新的源點去更新其餘點到目標點的距離。數據結構

代碼以下,nowIndex表明當前源點編號,minDis是當前源點到其餘點的最短距離,用於選擇下一個源點,dis數組存儲每一個點到最終目標點的距離,也就是結果,mark數組用於標記結點是否被看成源點過。數據結構和算法

#include<iostream>
#include<algorithm>
using namespace std;

#define inf 100000000

int G[10][10];
int dis[10];
bool mark[10];
int n, m;

void dijkstra(int nowIndex)
{
    mark[nowIndex] = true;
    for (int i = 1; i <= n; i++)//先將跟源點直接相連的結點更新一遍
        dis[i] = min(dis[i], G[nowIndex][i]);
    for (int i = 1; i < n; i++)//循環n-1次,由於源點已經更新過了
    {
        int minDis = inf;
        for (int j = 1; j <= n; j++)//找離當前源點最近的點
        {
            if (!mark[j] && dis[j] < minDis)
            {
                minDis = dis[j];
                nowIndex = j;
            }
        }
        mark[nowIndex] = true;
        for (int j = 1; j <= n; j++)//用當前源點去更新
            dis[j] = min(dis[j], dis[nowIndex] + G[nowIndex][j]);
    }
}

int main()
{
    cin >> n >> m;//輸入頂點數和邊數
    int u, v, w;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (i != j)
                G[i][j] = inf;
            else
                G[i][j] = 0;
    for (int i = 1; i <= n; i++)
        dis[i] = inf;
    for (int i = 0; i < m; i++)
    {
        cin >> u >> v >> w;//輸入無向邊
        G[u][v] = w;
        G[v][u] = w;
    }
    dijkstra(1);//以1號結點爲源點
    for (int i = 1; i <= n; i++)
    {
        cout << dis[i] << ' ';
    }

    return 0;
}

鄰接表實現

使用鄰接表存儲圖能大大下降空間複雜度,代碼以下:ide

#include<iostream>
#include<algorithm>
using namespace std;

#define inf 100000000
#define maxN 10000

int value[maxN], to[maxN], nextL[maxN];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m;

void dijkstra(int nowIndex)
{
    for (int i = 0; i <= n; i++)dis[i] = inf;
    dis[nowIndex] = 0;
    mark[nowIndex] = true;
    for (int i = head[nowIndex]; i; i = nextL[i])
    {
        dis[to[i]] = min(dis[to[i]], dis[nowIndex] + value[i]);
    }
    for (int i = 1; i < n; i++)//循環n-1次,由於源點已經更新過了
    {
        int minDis = inf;
        for (int j = 1; j <= n; j++)//找離當前源點最近的點
        {
            if (!mark[j] && dis[j] < minDis)
            {
                minDis = dis[j];
                nowIndex = j;
            }
        }
        mark[nowIndex] = true;
        for (int j = head[nowIndex]; j; j = nextL[j])
        {
            dis[to[j]] = min(dis[to[j]], dis[nowIndex] + value[j]);
        }
    }
}

void AddLine(int a, int b, int c)
{
    total++;
    to[total] = b;
    value[total] = c;
    nextL[total] = head[a];
    head[a] = total;
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        AddLine(a, b, c);
    }
    dijkstra(1);
    for (int i = 1; i <= n; i++)
        cout << dis[i] << " ";

    return 0;
}

堆優化

普通的Dijkstra時間複雜度爲\(O(n^2)\),但能夠經過優化達到\(O(nlogn)\),注意在上面的循環中咱們每次都要取出離當前源點最近的點,因此能夠用優先級隊列來優化。每次搜索將修改過dis的點進隊,而後每次取隊首就是最近的點。優化

代碼以下:spa

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

#define inf 100000000
#define maxN 10010

int s;
int value[500001], to[500001], nextL[500001];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m;

typedef pair<int, int> disID;
priority_queue<disID,vector<disID>,greater<disID>> q;

void dijkstra(int nowIndex)
{
    for (int i = 0; i <= n; i++)dis[i] = inf;
    dis[nowIndex] = 0;
    q.push(disID(0, nowIndex));
    while (!q.empty())
    {
        int t = q.top().second;
        q.pop();
        if (mark[t])continue;
        mark[t] = true;
        for (int i = head[t]; i ; i=nextL[i])
        {
            if (dis[to[i]] > dis[t] + value[i])
            {
                dis[to[i]] = dis[t] + value[i];
                q.push(disID(dis[to[i]], to[i]));
            }
        }
    }
}

void AddLine(int a, int b, int c)
{
    total++;
    to[total] = b;
    value[total] = c;
    nextL[total] = head[a];
    head[a] = total;
}

int main()
{
    cin >> n >> m >> s;
    for (int i = 1; i <= m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        AddLine(a, b, c);
    }
    dijkstra(s);
    for (int i = 1; i <= n; i++)
    {
        cout << dis[i] << ' ';
    }

    return 0;
}

Bellman-ford算法

上面的Dijkstra算法存在一個問題就是不能處理存在負權邊的狀況,只要有邊的權值是負數就不能用,這時能夠用Bellman-ford算法解決。code

Bellman-ford算法的思想是這樣的,咱們將每條邊的起點、權值、終點存儲爲三個數組from[i],val[i],to[i],而後掃描每一條邊,看能不能經過走這條邊來使dis[to[i]]減小。

代碼很簡單以下:

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

#define inf 100000000
int from[10000], val[10000], to[10000];
int dis[10000];
int n, m;

void Bellman_ford(int u)
{
    for (int i = 0; i <= n; i++)dis[i] = inf;
    dis[u] = 0;
    while (true)
    {
        bool update = false;
        for (int i = 1; i <= m; i++)
        {
            if (dis[from[i]] != inf && dis[to[i]] > dis[from[i]] + val[i])
            {
                dis[to[i]] = dis[from[i]] + val[i];//更新
                update = true;
            }
        }
        if (!update)break;//直到每一條邊都不能使dis減小
    }
}

int main()
{
    cin >> n >> m ;
    for (int i = 1; i <= m; i++)
    {
        cin >> from[i] >> to[i] >> val[i];
    }
    Bellman_ford(1);
    for (int i = 1; i <= n; i++)
        cout << dis[i] << ' ';
    return 0;
}

算法中的while循環最多循環n-1次,因此Bellman-ford的時間複雜度是\(O(mn)\),不只能處理負權邊,並且在稀疏圖(頂點數遠多於邊數)當中比Dijkstra快。

相關文章
相關標籤/搜索