新特性解讀 | MySQL 8.0 新增 HINT 模式

原創做者: 楊濤濤mysql


在開始演示以前,咱們先介紹下兩個概念。sql

 

概念一,數據的可選擇性基數,也就是常說的cardinality值。

查詢優化器在生成各類執行計劃以前,得先從統計信息中取得相關數據,這樣才能估算每步操做所涉及到的記錄數,而這個相關數據就是cardinality。簡單來講,就是每一個值在每一個字段中的惟一值分佈狀態。json

好比表t1有100行記錄,其中一列爲f1。f1中惟一值的個數能夠是100個,也能夠是1個,固然也能夠是1到100之間的任何一個數字。這裏惟一值越的多少,就是這個列的可選擇基數。優化

那看到這裏咱們就明白了,爲何要在基數高的字段上創建索引,而基數低的的字段創建索引反而沒有全表掃描來的快。固然這個只是一方面,至於更深刻的探討就不在我這篇探討的範圍了。ui

 

概念二,關於HINT的使用。

這裏我來講下HINT是什麼,在何時用。spa

HINT簡單來講就是在某些特定的場景下人工協助MySQL優化器的工做,使她生成最優的執行計劃。通常來講,優化器的執行計劃都是最優化的,不過在某些特定場景下,執行計劃可能不是最優化。code

好比:表t1通過大量的頻繁更新操做,(UPDATE,DELETE,INSERT),cardinality已經很不許確了,這時候恰好執行了一條SQL,那麼有可能這條SQL的執行計劃就不是最優的。爲何說有可能呢?orm

來看下具體演示

譬如,如下兩條SQL,索引

  • A:
select * from t1 where f1 = 20;
  • B:
select * from t1 where f1 = 30;

若是f1的值恰好頻繁更新的值爲30,而且沒有達到MySQL自動更新cardinality值的臨界值或者說用戶設置了手動更新又或者用戶減小了sample page等等,那麼對這兩條語句來講,可能不許確的就是B了。rem

 

這裏順帶說下,MySQL提供了自動更新和手動更新表cardinality值的方法,因篇幅有限,須要的能夠查閱手冊。

那回到正題上,MySQL 8.0 帶來了幾個HINT,我今天就舉個index_merge的例子。

示例表結構:

mysql> desc t1;
+------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| rank1 | int(11) | YES | MUL | NULL | |
| rank2 | int(11) | YES | MUL | NULL | |
| log_time | datetime | YES | MUL | NULL | |
| prefix_uid | varchar(100) | YES | | NULL | |
| desc1 | text | YES | | NULL | |
| rank3 | int(11) | YES | MUL | NULL | |
+------------+--------------+------+-----+---------+----------------+
7 rows in set (0.00 sec)

表記錄數:

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 32768 |
+----------+
1 row in set (0.01 sec)

這裏咱們兩條經典的SQL:

  • SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
  • SQL D:
select * from t1 where rank1 =100 and rank2 =100 and rank3 =100;

表t1實際上在rank1,rank2,rank3三列上分別有一個二級索引。

 

那咱們來看SQL C的查詢計劃。

mysql> explain format=json select * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G
*************************** 1. row ***************************
EXPLAIN: {
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "3243.65"
},
"table": {
"table_name": "t1",
"access_type": "ALL",
"possible_keys": [
"idx_rank1",
"idx_rank2",
"idx_rank3"
],
"rows_examined_per_scan": 32034,
"rows_produced_per_join": 115,
"filtered": "0.36",
"cost_info": {
"read_cost": "3232.07",
"eval_cost": "11.58",
"prefix_cost": "3243.65",
"data_read_per_join": "49K"
},
"used_columns": [
"id",
"rank1",
"rank2",
"log_time",
"prefix_uid",
"desc1",
"rank3"
],
"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"
}
}
}
1 row in set, 1 warning (0.00 sec)

顯然,沒有用到任何索引,掃描的行數爲32034,cost爲3243.65。

 

咱們加上hint給相同的查詢,再次看看查詢計劃。

這個時候用到了index_merge,union了三個列。掃描的行數爲1103,cost爲441.09,明顯比以前的快了好幾倍。

mysql> explain format=json select /*+ index_merge(t1) */ * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G
*************************** 1. row ***************************
EXPLAIN: {
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "441.09"
},
"table": {
"table_name": "t1",
"access_type": "index_merge",
"possible_keys": [
"idx_rank1",
"idx_rank2",
"idx_rank3"
],
"key": "union(idx_rank1,idx_rank2,idx_rank3)",
"key_length": "5,5,5",
"rows_examined_per_scan": 1103,
"rows_produced_per_join": 1103,
"filtered": "100.00",
"cost_info": {
"read_cost": "330.79",
"eval_cost": "110.30",
"prefix_cost": "441.09",
"data_read_per_join": "473K"
},
"used_columns": [
"id",
"rank1",
"rank2",
"log_time",
"prefix_uid",
"desc1",
"rank3"
],
"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"
}
}
}
1 row in set, 1 warning (0.00 sec)

 

咱們再看下SQL D的計劃:

  • 不加HINT,
mysql> explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G
*************************** 1. row ***************************
EXPLAIN: {
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "534.34"
},
"table": {
"table_name": "t1",
"access_type": "ref",
"possible_keys": [
"idx_rank1",
"idx_rank2",
"idx_rank3"
],
"key": "idx_rank1",
"used_key_parts": [
"rank1"
],
"key_length": "5",
"ref": [
"const"
],
"rows_examined_per_scan": 555,
"rows_produced_per_join": 0,
"filtered": "0.07",
"cost_info": {
"read_cost": "478.84",
"eval_cost": "0.04",
"prefix_cost": "534.34",
"data_read_per_join": "176"
},
"used_columns": [
"id",
"rank1",
"rank2",
"log_time",
"prefix_uid",
"desc1",
"rank3"
],
"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"
}
}
}
1 row in set, 1 warning (0.00 sec)
  • 加了HINT,
mysql> explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G
*************************** 1. row ***************************
EXPLAIN: {
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "5.23"
},
"table": {
"table_name": "t1",
"access_type": "index_merge",
"possible_keys": [
"idx_rank1",
"idx_rank2",
"idx_rank3"
],
"key": "intersect(idx_rank1,idx_rank2,idx_rank3)",
"key_length": "5,5,5",
"rows_examined_per_scan": 1,
"rows_produced_per_join": 1,
"filtered": "100.00",
"cost_info": {
"read_cost": "5.13",
"eval_cost": "0.10",
"prefix_cost": "5.23",
"data_read_per_join": "440"
},
"used_columns": [
"id",
"rank1",
"rank2",
"log_time",
"prefix_uid",
"desc1",
"rank3"
],
"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"
}
}
}
1 row in set, 1 warning (0.00 sec)

對比下以上兩個,加了HINT的比不加HINT的cost小了100倍。

 

總結下,就是說表的cardinality值影響這張的查詢計劃,若是這個值沒有正常更新的話,就須要手工加HINT了。相信MySQL將來的版本會帶來更多的HINT。

相關文章
相關標籤/搜索