文章做者:foochane
原文連接:foochane.cn/article/201…html
Hive
是一個能夠將SQL
翻譯爲MR
程序的工具,支持用戶將HDFS
上的文件映射爲表結構,而後用戶就能夠輸入SQL
對這些表(HDFS
上的文件)進行查詢分析。Hive
將用戶定義的庫、表結構等信息存儲hive
的元數據庫(能夠是本地derby
,也能夠是遠程mysql
)中。java
MR
程序,只須要寫SQL
腳本便可hive 2
之後 把底層引擎從MapReduce
換成了Spark
mysql
啓動hive
前要先啓動hdfs
和yarn
sql
輸入命令 $ hive
便可:shell
hadoop@Master:~$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/bigdata/hive-2.3.5/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/bigdata/hadoop-2.7.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Logging initialized using configuration in file:/usr/local/bigdata/hive-2.3.5/conf/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive>show databases;
OK
dbtest
default
Time taken: 3.539 seconds, Fetched: 2 row(s)
hive>
複製代碼
技巧: 讓提示符顯示當前庫:數據庫
hive>set hive.cli.print.current.db=true;
複製代碼
顯示查詢結果是顯示自帶名稱:apache
hive>set hive.cli.print.header=true;
複製代碼
這樣設置只是對當前窗口有效,永久生效能夠在當前用戶目錄下建一個.hiverc
文件。 加入以下內容:json
set hive.cli.print.current.db=true;
set hive.cli.print.header=true;
複製代碼
將hive啓動爲一個服務端,而後能夠在任意一臺機器上使用beeline客戶端鏈接hive服務,進行交互式查詢數組
hive是一個單機的服務端能夠在任何一臺機器裏安裝,它訪問的是hdfs集羣。bash
啓動hive服務 :
$ nohup hiveserver2 1>/dev/null 2>&1 &
複製代碼
啓動後,能夠用beeline去鏈接,beeline是一個客戶端,能夠在任意機器啓動,只要可以跟hive服務端相連便可。
在本地啓動beeline
$ beeline -u jdbc:hive2://localhost:10000 -n hadoop -p hadoop
複製代碼
在啓動機器上啓動beeline
$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
複製代碼
示例:
hadoop@Master:~$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
Connecting to jdbc:hive2://Master:10000
19/06/25 01:50:12 INFO jdbc.Utils: Supplied authorities: Master:10000
19/06/25 01:50:12 INFO jdbc.Utils: Resolved authority: Master:10000
19/06/25 01:50:13 INFO jdbc.HiveConnection: Will try to open client transport with JDBC Uri: jdbc:hive2://Master:10000
Connected to: Apache Hive (version 2.3.5)
Driver: Hive JDBC (version 1.2.1.spark2)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 1.2.1.spark2 by Apache Hive
0: jdbc:hive2://Master:10000>
複製代碼
errorMessage:Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: hadoop is not allowed to impersonate hadoop), serverProtocolVersion:null)
複製代碼
在 hadoop配置文件中的core-site.xml 文件中添加以下內容,而後重啓hadoop集羣:
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>hadoop</value>
<description>Allow the superuser oozie to impersonate any members of the group group1 and group2</description>
</property>
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>Master,127.0.0.1,localhost</value>
<description>The superuser can connect only from host1 and host2 to impersonate a user</description>
</property>
複製代碼
接用 hive -e
在命令行中運行sql
命令,該命令能夠一塊兒運行多條sql
語句,用;
隔開。
hive -e "sql1;sql2;sql3;sql4"
複製代碼
另外,還能夠使用 hive -f
命令。
事先將sql語句寫入一個文件好比 q.hql
,而後用hive -f
命令執行:
bin/hive -f q.hql
複製代碼
能夠將方式3
寫入一個xxx.sh
腳本中,而後運行該腳本。
create database db1;
複製代碼
示例:
0: jdbc:hive2://Master:10000> create database db1;
No rows affected (1.123 seconds)
0: jdbc:hive2://Master:10000> show databases;
+----------------+--+
| database_name |
+----------------+--+
| db1 |
| dbtest |
| default |
+----------------+--+
複製代碼
成功後,hive就會在/user/hive/warehouse/
下建一個文件夾: db1.db
drop database db1;
複製代碼
示例:
0: jdbc:hive2://Master:10000> drop database db1;
No rows affected (0.969 seconds)
0: jdbc:hive2://Master:10000> show databases;
+----------------+--+
| database_name |
+----------------+--+
| dbtest |
| default |
+----------------+--+
複製代碼
use db1;
create table t_test(id int,name string,age int)
row format delimited
fields terminated by ',';
複製代碼
示例:
0: jdbc:hive2://Master:10000> use db1;
No rows affected (0.293 seconds)
0: jdbc:hive2://Master:10000> create table t_test(id int,name string,age int)
0: jdbc:hive2://Master:10000> row format delimited
0: jdbc:hive2://Master:10000> fields terminated by ',';
No rows affected (1.894 seconds)
0: jdbc:hive2://Master:10000> desc db1.t_test;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
| age | int | |
+-----------+------------+----------+--+
3 rows selected (0.697 seconds)
複製代碼
建表後,hive會在倉庫目錄中建一個表目錄: /user/hive/warehouse/db1.db/t_test
create external table t_test1(id int,name string,age int)
row format delimited
fields terminated by ','
location '/user/hive/external/t_test1';
複製代碼
這裏的location
指的是hdfs
上的目錄,能夠直接在該目錄下放入相應格式的文件,就能夠在hive
表中查看到。
示例:
0: jdbc:hive2://Master:10000> create external table t_test1(id int,name string,age int)
0: jdbc:hive2://Master:10000> row format delimited
0: jdbc:hive2://Master:10000> fields terminated by ','
0: jdbc:hive2://Master:10000> location '/user/hive/external/t_test1';
No rows affected (0.7 seconds)
0: jdbc:hive2://Master:10000> desc db1.t_test1;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
| age | int | |
+-----------+------------+----------+--+
3 rows selected (0.395 seconds)
複製代碼
本地建立測試文件user.data
1,xiaowang,28
2,xiaoli,18
3,xiaohong,23
複製代碼
放入hdfs中:
$ hdfs dfs -mkdir -p /user/hive/external/t_test1
$ hdfs dfs -put ./user.data /user/hive/external/t_test1
複製代碼
此時在hive表中就能夠查看到數據:
0: jdbc:hive2://Master:10000> select * from db1.t_test1;
+-------------+---------------+--------------+--+
| t_test1.id | t_test1.name | t_test1.age |
+-------------+---------------+--------------+--+
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
+-------------+---------------+--------------+--+
3 rows selected (8 seconds)
複製代碼
注意:若是刪除外部表,hdfs裏的文件並不會刪除
也就是若是包db1.t_test1
刪除,hdfs下/user/hive/external/t_test1/user.data
文件並不會被刪除。
本質上就是把數據文件放入表目錄;
能夠用hive命令來作:
load data [local] inpath '/data/path' [overwrite] into table t_test;
複製代碼
加local
表明導入本地數據。
導入本地數據
load data local inpath '/home/hadoop/user.data' into table t_test;
複製代碼
示例:
0: jdbc:hive2://Master:10000> load data local inpath '/home/hadoop/user.data' into table t_test;
No rows affected (2.06 seconds)
0: jdbc:hive2://Master:10000> select * from db1.t_test;
+------------+--------------+-------------+--+
| t_test.id | t_test.name | t_test.age |
+------------+--------------+-------------+--+
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
+------------+--------------+-------------+--+
複製代碼
導入hdfs中的數據
load data inpath '/user/hive/external/t_test1/user.data' into table t_test;
複製代碼
示例:
0: jdbc:hive2://Master:10000> load data inpath '/user/hive/external/t_test1/user.data' into table t_test;
No rows affected (1.399 seconds)
0: jdbc:hive2://Master:10000> select * from db1.t_test;
+------------+--------------+-------------+--+
| t_test.id | t_test.name | t_test.age |
+------------+--------------+-------------+--+
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
+------------+--------------+-------------+--+
6 rows selected (0.554 seconds)
複製代碼
注意:從本地導入數據,本地數據不是發生變化,從hdfs中導入數據,hdfs中的導入的文件會被移動到數據倉庫相應的目錄下
分區的意義在於能夠將數據分子目錄存儲,以便於查詢時讓數據讀取範圍更精準
create table t_test1(id int,name string,age int,create_time bigint)
partitioned by (day string,country string)
row format delimited
fields terminated by ',';
複製代碼
插入數據到指定分區:
> load data [local] inpath '/data/path1' [overwrite] into table t_test partition(day='2019-06-04',country='China');
> load data [local] inpath '/data/path2' [overwrite] into table t_test partition(day='2019-06-05',country='China');
> load data [local] inpath '/data/path3' [overwrite] into table t_test partition(day='2019-06-04',country='England');
複製代碼
導入完成後,造成的目錄結構以下:
/user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=China/...
/user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=England/...
/user/hive/warehouse/db1.db/t_test1/day=2019-06-05/country=China/...
複製代碼
select * from t_table where a<1000 and b>0;
複製代碼
各種join
測試數據: a.txt:
a,1
b,2
c,3
d,4
複製代碼
b.txt:
b,16
c,17
d,18
e,19
複製代碼
建表導入數據:
create table t_a(name string,num int)
row format delimited
fields terminated by ',';
create table t_b(name string,age int)
row format delimited
fields terminated by ',';
load data local inpath '/home/hadoop/a.txt' into table t_a;
load data local inpath '/home/hadoop/b.txt' into table t_b;
複製代碼
表數據以下:
0: jdbc:hive2://Master:10000> select * from t_a;
+-----------+----------+--+
| t_a.name | t_a.num |
+-----------+----------+--+
| a | 1 |
| b | 2 |
| c | 3 |
| d | 4 |
+-----------+----------+--+
4 rows selected (0.523 seconds)
0: jdbc:hive2://Master:10000> select * from t_b;
+-----------+----------+--+
| t_b.name | t_b.age |
+-----------+----------+--+
| b | 16 |
| c | 17 |
| d | 18 |
| e | 19 |
+-----------+----------+--+
4 rows selected (0.482 seconds)
複製代碼
指定join條件
select a.*,b.*
from
t_a a join t_b b on a.name=b.name;
複製代碼
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a join t_b b on a.name=b.name;
....
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
+---------+--------+---------+--------+--+
複製代碼
select a.*,b.*
from
t_a a left outer join t_b b on a.name=b.name;
複製代碼
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a left outer join t_b b on a.name=b.name;
...
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| a | 1 | NULL | NULL |
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
+---------+--------+---------+--------+--+
複製代碼
select a.*,b.*
from
t_a a right outer join t_b b on a.name=b.name;
複製代碼
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a right outer join t_b b on a.name=b.name;
....
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
| NULL | NULL | e | 19 |
+---------+--------+---------+--------+--+
複製代碼
select a.*,b.*
from
t_a a full outer join t_b b on a.name=b.name;
複製代碼
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a full outer join t_b b on a.name=b.name;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| a | 1 | NULL | NULL |
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
| NULL | NULL | e | 19 |
+---------+--------+---------+--------+--+
複製代碼
求存在於a表,且b表裏也存在的數據。
select a.*
from
t_a a left semi join t_b b on a.name=b.name;
複製代碼
示例:
0: jdbc:hive2://Master:10000> select a.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a left semi join t_b b on a.name=b.name;
.....
+---------+--------+--+
| a.name | a.num |
+---------+--------+--+
| b | 2 |
| c | 3 |
| d | 4 |
+---------+--------+--+
複製代碼
構建測試數據
192.168.33.3,http://www.xxx.cn/stu,2019-08-04 15:30:20
192.168.33.3,http://www.xxx.cn/teach,2019-08-04 15:35:20
192.168.33.4,http://www.xxx.cn/stu,2019-08-04 15:30:20
192.168.33.4,http://www.xxx.cn/job,2019-08-04 16:30:20
192.168.33.5,http://www.xxx.cn/job,2019-08-04 15:40:20
192.168.33.3,http://www.xxx.cn/stu,2019-08-05 15:30:20
192.168.44.3,http://www.xxx.cn/teach,2019-08-05 15:35:20
192.168.33.44,http://www.xxx.cn/stu,2019-08-05 15:30:20
192.168.33.46,http://www.xxx.cn/job,2019-08-05 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-05 15:40:20
192.168.133.3,http://www.xxx.cn/register,2019-08-06 15:30:20
192.168.111.3,http://www.xxx.cn/register,2019-08-06 15:35:20
192.168.34.44,http://www.xxx.cn/pay,2019-08-06 15:30:20
192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.25,http://www.xxx.cn/job,2019-08-06 15:40:20
192.168.33.36,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
複製代碼
建分區表,導入數據:
create table t_pv(ip string,url string,time string)
partitioned by (dt string)
row format delimited
fields terminated by ',';
load data local inpath '/home/hadoop/pv.log.0804' into table t_pv partition(dt='2019-08-04');
load data local inpath '/home/hadoop/pv.log.0805' into table t_pv partition(dt='2019-08-05');
load data local inpath '/home/hadoop/pv.log.0806' into table t_pv partition(dt='2019-08-06');
複製代碼
查看數據:
0: jdbc:hive2://Master:10000> select * from t_pv;
+----------------+------------------------------+----------------------+-------------+--+
| t_pv.ip | t_pv.url | t_pv.time | t_pv.dt |
+----------------+------------------------------+----------------------+-------------+--+
| 192.168.33.3 | http://www.xxx.cn/stu | 2019-08-04 15:30:20 | 2019-08-04 |
| 192.168.33.3 | http://www.xxx.cn/teach | 2019-08-04 15:35:20 | 2019-08-04 |
| 192.168.33.4 | http://www.xxx.cn/stu | 2019-08-04 15:30:20 | 2019-08-04 |
| 192.168.33.4 | http://www.xxx.cn/job | 2019-08-04 16:30:20 | 2019-08-04 |
| 192.168.33.5 | http://www.xxx.cn/job | 2019-08-04 15:40:20 | 2019-08-05 |
| 192.168.33.3 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 | 2019-08-05 |
| 192.168.44.3 | http://www.xxx.cn/teach | 2019-08-05 15:35:20 | 2019-08-05 |
| 192.168.33.44 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 | 2019-08-05 |
| 192.168.33.46 | http://www.xxx.cn/job | 2019-08-05 16:30:20 | 2019-08-05 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-05 15:40:20 | 2019-08-06 |
| 192.168.133.3 | http://www.xxx.cn/register | 2019-08-06 15:30:20 | 2019-08-06 |
| 192.168.111.3 | http://www.xxx.cn/register | 2019-08-06 15:35:20 | 2019-08-06 |
| 192.168.34.44 | http://www.xxx.cn/pay | 2019-08-06 15:30:20 | 2019-08-06 |
| 192.168.33.46 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 | 2019-08-06 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-06 15:40:20 | 2019-08-06 |
| 192.168.33.46 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 | 2019-08-06 |
| 192.168.33.25 | http://www.xxx.cn/job | 2019-08-06 15:40:20 | 2019-08-06 |
| 192.168.33.36 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 | 2019-08-06 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-06 15:40:20 | 2019-08-06 |
+----------------+------------------------------+----------------------+-------------+--+
複製代碼
查看錶分區:
show partitions t_pv;
複製代碼
0: jdbc:hive2://Master:10000> show partitions t_pv;
+----------------+--+
| partition |
+----------------+--+
| dt=2019-08-04 |
| dt=2019-08-05 |
| dt=2019-08-06 |
+----------------+--+
3 rows selected (0.575 seconds)
複製代碼
select ip,upper(url),time
from t_pv
複製代碼
0: jdbc:hive2://Master:10000> select ip,upper(url),time
0: jdbc:hive2://Master:10000> from t_pv
+----------------+------------------------------+----------------------+--+
| ip | _c1 | time |
+----------------+------------------------------+----------------------+--+
| 192.168.33.3 | HTTP://WWW.XXX.CN/STU | 2019-08-04 15:30:20 |
| 192.168.33.3 | HTTP://WWW.XXX.CN/TEACH | 2019-08-04 15:35:20 |
| 192.168.33.4 | HTTP://WWW.XXX.CN/STU | 2019-08-04 15:30:20 |
| 192.168.33.4 | HTTP://WWW.XXX.CN/JOB | 2019-08-04 16:30:20 |
| 192.168.33.5 | HTTP://WWW.XXX.CN/JOB | 2019-08-04 15:40:20 |
| 192.168.33.3 | HTTP://WWW.XXX.CN/STU | 2019-08-05 15:30:20 |
| 192.168.44.3 | HTTP://WWW.XXX.CN/TEACH | 2019-08-05 15:35:20 |
| 192.168.33.44 | HTTP://WWW.XXX.CN/STU | 2019-08-05 15:30:20 |
| 192.168.33.46 | HTTP://WWW.XXX.CN/JOB | 2019-08-05 16:30:20 |
| 192.168.33.55 | HTTP://WWW.XXX.CN/JOB | 2019-08-05 15:40:20 |
| 192.168.133.3 | HTTP://WWW.XXX.CN/REGISTER | 2019-08-06 15:30:20 |
| 192.168.111.3 | HTTP://WWW.XXX.CN/REGISTER | 2019-08-06 15:35:20 |
| 192.168.34.44 | HTTP://WWW.XXX.CN/PAY | 2019-08-06 15:30:20 |
| 192.168.33.46 | HTTP://WWW.XXX.CN/EXCERSIZE | 2019-08-06 16:30:20 |
| 192.168.33.55 | HTTP://WWW.XXX.CN/JOB | 2019-08-06 15:40:20 |
| 192.168.33.46 | HTTP://WWW.XXX.CN/EXCERSIZE | 2019-08-06 16:30:20 |
| 192.168.33.25 | HTTP://WWW.XXX.CN/JOB | 2019-08-06 15:40:20 |
| 192.168.33.36 | HTTP://WWW.XXX.CN/EXCERSIZE | 2019-08-06 16:30:20 |
| 192.168.33.55 | HTTP://WWW.XXX.CN/JOB | 2019-08-06 15:40:20 |
+----------------+------------------------------+----------------------+--+
複製代碼
select url ,count(1) --對分好組的數據進行逐行運算
from t_pv
group by url;
複製代碼
0: jdbc:hive2://Master:10000> select url ,count(1)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by url;
·····
+------------------------------+------+--+
| url | _c1 |
+------------------------------+------+--+
| http://www.xxx.cn/excersize | 3 |
| http://www.xxx.cn/job | 7 |
| http://www.xxx.cn/pay | 1 |
| http://www.xxx.cn/register | 2 |
| http://www.xxx.cn/stu | 4 |
| http://www.xxx.cn/teach | 2 |
+------------------------------+------+--+
複製代碼
能夠給_c1加入字段名稱:
select url ,count(1) as count
from t_pv
group by url;
複製代碼
select url,max(ip)
from t_pv
group by url;
複製代碼
0: jdbc:hive2://Master:10000> select url,max(ip)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by url;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+------------------------------+----------------+--+
| url | _c1 |
+------------------------------+----------------+--+
| http://www.xxx.cn/excersize | 192.168.33.46 |
| http://www.xxx.cn/job | 192.168.33.55 |
| http://www.xxx.cn/pay | 192.168.34.44 |
| http://www.xxx.cn/register | 192.168.133.3 |
| http://www.xxx.cn/stu | 192.168.33.44 |
| http://www.xxx.cn/teach | 192.168.44.3 |
+------------------------------+----------------+--+
複製代碼
select ip,url,max(time)
from t_pv
group by ip,url;
複製代碼
0: jdbc:hive2://Master:10000> select ip,url,max(time)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by ip,url;
.....
+----------------+------------------------------+----------------------+--+
| ip | url | _c2 |
+----------------+------------------------------+----------------------+--+
| 192.168.111.3 | http://www.xxx.cn/register | 2019-08-06 15:35:20 |
| 192.168.133.3 | http://www.xxx.cn/register | 2019-08-06 15:30:20 |
| 192.168.33.25 | http://www.xxx.cn/job | 2019-08-06 15:40:20 |
| 192.168.33.3 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 |
| 192.168.33.3 | http://www.xxx.cn/teach | 2019-08-04 15:35:20 |
| 192.168.33.36 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 |
| 192.168.33.4 | http://www.xxx.cn/job | 2019-08-04 16:30:20 |
| 192.168.33.4 | http://www.xxx.cn/stu | 2019-08-04 15:30:20 |
| 192.168.33.44 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 |
| 192.168.33.46 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 |
| 192.168.33.46 | http://www.xxx.cn/job | 2019-08-05 16:30:20 |
| 192.168.33.5 | http://www.xxx.cn/job | 2019-08-04 15:40:20 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-06 15:40:20 |
| 192.168.34.44 | http://www.xxx.cn/pay | 2019-08-06 15:30:20 |
| 192.168.44.3 | http://www.xxx.cn/teach | 2019-08-05 15:35:20 |
+----------------+------------------------------+----------------------+--+
複製代碼
select dt,'http://www.xxx.cn/job',count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job'
group by dt having dt>'2019-08-04';
select dt,max(url),count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job'
group by dt having dt>'2019-08-04';
select dt,url,count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job'
group by dt,url having dt>'2019-08-04';
select dt,url,count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job' and dt>'2019-08-04'
group by dt,url;
複製代碼
select dt,url,count(1),max(ip)
from t_pv
where dt>'2019-08-04'
group by dt,url;
複製代碼
select dt,url,count(1) as cnts,max(ip)
from t_pv
where dt>'2019-08-04'
group by dt,url having cnts>2;
複製代碼
select dt,url,cnts,max_ip
from
(select dt,url,count(1) as cnts,max(ip) as max_ip
from t_pv
where dt>'2019-08-04'
group by dt,url) tmp
where cnts>2;
複製代碼
TINYINT
(1-byte signed integer, from -128 to 127)
SMALLINT
(2-byte signed integer, from -32,768 to 32,767)
INT/INTEGER
(4-byte signed integer, from -2,147,483,648 to 2,147,483,647)
BIGINT
(8-byte signed integer, from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
FLOAT
(4-byte single precision floating point number)
DOUBLE
(8-byte double precision floating point number)
示例:
create table t_test(a string ,b int,c bigint,d float,e double,f tinyint,g smallint)
複製代碼
TIMESTAMP
(Note: Only available starting with Hive 0.8.0)DATE
(Note: Only available starting with Hive 0.12.0)示例,假若有如下數據文件:
1,zhangsan,1985-06-30
2,lisi,1986-07-10
3,wangwu,1985-08-09
複製代碼
那麼,就能夠建一個表來對數據進行映射
create table t_customer(id int,name string,birthday date)
row format delimited fields terminated by ',';
複製代碼
而後導入數據
load data local inpath '/root/customer.dat' into table t_customer;
複製代碼
而後,就能夠正確查詢
STRING
VARCHAR
(Note: Only available starting with Hive 0.12.0)CHAR
(Note: Only available starting with Hive 0.13.0)BOOLEAN
BINARY
(Note: Only available starting with Hive 0.8.0)有以下數據:
玩具總動員4,湯姆·漢克斯:蒂姆·艾倫:安妮·波茨,2019-06-21
流浪地球,屈楚蕭:吳京:李光潔:吳孟達,2019-02-05
千與千尋,柊瑠美:入野自由:夏木真理:菅原文太,2019-06-21
戰狼2,吳京:弗蘭克·格里羅:吳剛:張翰:盧靖姍,2017-08-16
複製代碼
建表導入數據:
--建表映射:
create table t_movie(movie_name string,actors array<string>,first_show date)
row format delimited fields terminated by ','
collection items terminated by ':';
--導入數據
load data local inpath '/home/hadoop/actor.dat' into table t_movie;
複製代碼
0: jdbc:hive2://Master:10000> select * from t_movie;
+---------------------+-----------------------------------+---------------------+--+
| t_movie.movie_name | t_movie.actors | t_movie.first_show |
+---------------------+-----------------------------------+---------------------+--+
| 玩具總動員4 | ["湯姆·漢克斯","蒂姆·艾倫","安妮·波茨"] | 2019-06-21 |
| 流浪地球 | ["屈楚蕭","吳京","李光潔","吳孟達"] | 2019-02-05 |
| 千與千尋 | ["柊瑠美","入野自由","夏木真理","菅原文太"] | 2019-06-21 |
| 戰狼2 | ["吳京","弗蘭克·格里羅","吳剛","張翰","盧靖姍"] | 2017-08-16 |
+---------------------+-----------------------------------+---------------------+--+
複製代碼
select movie_name,actors[0],first_show from t_movie;
複製代碼
0: jdbc:hive2://Master:10000> select movie_name,actors[0],first_show from t_movie;
+-------------+---------+-------------+--+
| movie_name | _c1 | first_show |
+-------------+---------+-------------+--+
| 玩具總動員4 | 湯姆·漢克斯 | 2019-06-21 |
| 流浪地球 | 屈楚蕭 | 2019-02-05 |
| 千與千尋 | 柊瑠美 | 2019-06-21 |
| 戰狼2 | 吳京 | 2017-08-16 |
+-------------+---------+-------------+--+
複製代碼
select movie_name,actors,first_show
from t_movie where array_contains(actors,'吳京');
複製代碼
0: jdbc:hive2://Master:10000> select movie_name,actors,first_show
0: jdbc:hive2://Master:10000> from t_movie where array_contains(actors,'吳京');
+-------------+-----------------------------------+-------------+--+
| movie_name | actors | first_show |
+-------------+-----------------------------------+-------------+--+
| 流浪地球 | ["屈楚蕭","吳京","李光潔","吳孟達"] | 2019-02-05 |
| 戰狼2 | ["吳京","弗蘭克·格里羅","吳剛","張翰","盧靖姍"] | 2017-08-16 |
+-------------+-----------------------------------+-------------+--+
複製代碼
select movie_name
,size(actors) as actor_number
,first_show
from t_movie;
複製代碼
0: jdbc:hive2://Master:10000> from t_movie;
+-------------+---------------+-------------+--+
| movie_name | actor_number | first_show |
+-------------+---------------+-------------+--+
| 玩具總動員4 | 3 | 2019-06-21 |
| 流浪地球 | 4 | 2019-02-05 |
| 千與千尋 | 4 | 2019-06-21 |
| 戰狼2 | 5 | 2017-08-16 |
+-------------+---------------+-------------+--+
複製代碼
1,zhangsan,father:xiaoming#mother:xiaohuang#brother:xiaoxu,28
2,lisi,father:mayun#mother:huangyi#brother:guanyu,22
3,wangwu,father:wangjianlin#mother:ruhua#sister:jingtian,29
4,mayun,father:mayongzhen#mother:angelababy,26
複製代碼
導入數據
-- 建表映射上述數據
create table t_family(id int,name string,family_members map<string,string>,age int)
row format delimited fields terminated by ','
collection items terminated by '#'
map keys terminated by ':';
-- 導入數據
load data local inpath '/root/hivetest/fm.dat' into table t_family;
複製代碼
0: jdbc:hive2://Master:10000> select * from t_family;
+--------------+----------------+----------------------------------------------------------------+---------------+--+
| t_family.id | t_family.name | t_family.family_members | t_family.age |
+--------------+----------------+----------------------------------------------------------------+---------------+--+
| 1 | zhangsan | {"father":"xiaoming","mother":"xiaohuang","brother":"xiaoxu"} | 28 |
| 2 | lisi | {"father":"mayun","mother":"huangyi","brother":"guanyu"} | 22 |
| 3 | wangwu | {"father":"wangjianlin","mother":"ruhua","sister":"jingtian"} | 29 |
| 4 | mayun | {"father":"mayongzhen","mother":"angelababy"} | 26 |
+--------------+----------------+----------------------------------------------------------------+---------------+--+
複製代碼
select id,name,family_members["father"] as father,family_members["sister"] as sister,age
from t_family;
複製代碼
select id,name,map_keys(family_members) as relations,age
from t_family;
複製代碼
select id,name,map_values(family_members) as relations,age
from t_family;
複製代碼
select id,name,size(family_members) as relations,age
from t_family;
複製代碼
-- 方案1:一句話寫完
select id,name,age,family_members['brother']
from t_family where array_contains(map_keys(family_members),'brother');
-- 方案2:子查詢
select id,name,age,family_members['brother']
from
(select id,name,age,map_keys(family_members) as relations,family_members
from t_family) tmp
where array_contains(relations,'brother');
複製代碼
數據
1,zhangsan,18:male:深圳
2,lisi,28:female:北京
3,wangwu,38:male:廣州
4,laowang,26:female:上海
5,yangyang,35:male:杭州
複製代碼
導入數據:
-- 建表映射上述數據
drop table if exists t_user;
create table t_user(id int,name string,info struct<age:int,sex:string,addr:string>)
row format delimited fields terminated by ','
collection items terminated by ':';
-- 導入數據
load data local inpath '/home/hadoop/user.dat' into table t_user;
複製代碼
0: jdbc:hive2://Master:10000> select * from t_user;
+------------+--------------+----------------------------------------+--+
| t_user.id | t_user.name | t_user.info |
+------------+--------------+----------------------------------------+--+
| 1 | zhangsan | {"age":18,"sex":"male","addr":"深圳"} |
| 2 | lisi | {"age":28,"sex":"female","addr":"北京"} |
| 3 | wangwu | {"age":38,"sex":"male","addr":"廣州"} |
| 4 | laowang | {"age":26,"sex":"female","addr":"上海"} |
| 5 | yangyang | {"age":35,"sex":"male","addr":"杭州"} |
+------------+--------------+----------------------------------------+--+
複製代碼
select id,name,info.addr
from t_user;
複製代碼
0: jdbc:hive2://Master:10000> select id,name,info.addr
0: jdbc:hive2://Master:10000> from t_user;
+-----+-----------+-------+--+
| id | name | addr |
+-----+-----------+-------+--+
| 1 | zhangsan | 深圳 |
| 2 | lisi | 北京 |
| 3 | wangwu | 廣州 |
| 4 | laowang | 上海 |
| 5 | yangyang | 杭州 |
+-----+-----------+-------+--+
複製代碼
測試函數
select substr("abcdef",1,3);
複製代碼
0: jdbc:hive2://Master:10000> select substr("abcdef",1,3);
+------+--+
| _c0 |
+------+--+
| abc |
+------+--+
複製代碼
from_unixtime(21938792183,'yyyy-MM-dd HH:mm:ss')
複製代碼
返回: '2017-06-03 17:50:30'
select cast("8" as int);
select cast("2019-2-3" as data)
複製代碼
substr("abcde",1,3) --> 'abc'
concat('abc','def') --> 'abcdef'
複製代碼
0: jdbc:hive2://Master:10000> select substr("abcde",1,3);
+------+--+
| _c0 |
+------+--+
| abc |
+------+--+
1 row selected (0.152 seconds)
0: jdbc:hive2://Master:10000> select concat('abc','def');
+---------+--+
| _c0 |
+---------+--+
| abcdef |
+---------+--+
1 row selected (0.165 seconds)
複製代碼
get_json_object('{\"key1\":3333,\"key2\":4444}' , '$.key1')
複製代碼
返回:3333
json_tuple('{\"key1\":3333,\"key2\":4444}','key1','key2') as(key1,key2)
複製代碼
返回:3333, 4444
parse_url_tuple('http://www.xxxx.cn/bigdata?userid=8888','HOST','PATH','QUERY','QUERY:userid')
複製代碼
返回: www.xxxx.cn /bigdata userid=8888 8888
測試數據以下:
1,zhangsan:18-1999063117:30:00-beijing
2,lisi:28-1989063117:30:00-shanghai
3,wangwu:20-1997063117:30:00-tieling
複製代碼
建表導入數據:
create table t_user_info(info string)
row format delimited;
複製代碼
導入數據:
load data local inpath '/root/udftest.data' into table t_user_info;
複製代碼
需求:利用上表生成以下新表
t_user:uid,uname,age,birthday,address
複製代碼
思路:能夠自定義一個函數parse_user_info(),能傳入一行上述數據,返回切分好的字段
而後能夠經過以下sql完成需求:
create t_user
as
select
parse_user_info(info,0) as uid,
parse_user_info(info,1) as uname,
parse_user_info(info,2) as age,
parse_user_info(info,3) as birthday_date,
parse_user_info(info,4) as birthday_time,
parse_user_info(info,5) as address
from t_user_info;
複製代碼
實現關鍵: 自定義parse_user_info() 函數
一、寫一個java類實現函數所須要的功能
public class UserInfoParser extends UDF{
// 1,zhangsan:18-1999063117:30:00-beijing
public String evaluate(String line,int index) {
String newLine = line.replaceAll(",", "\001").replaceAll(":", "\001").replaceAll("-", "\001");
StringBuilder sb = new StringBuilder();
String[] split = newLine.split("\001");
StringBuilder append = sb.append(split[0])
.append("\t")
.append(split[1])
.append("\t")
.append(split[2])
.append("\t")
.append(split[3].substring(0, 8))
.append("\t")
.append(split[3].substring(8, 10)).append(split[4]).append(split[5])
.append("\t")
.append(split[6]);
String res = append.toString();
return res.split("\t")[index];
}
}
複製代碼
二、將java類打成jar包: d:/up.jar
三、上傳jar包到hive所在的機器上 /root/up.jar
四、在hive的提示符中添加jar包
hive> add jar /root/up.jar;
複製代碼
五、建立一個hive的自定義函數名 跟 寫好的jar包中的java類對應
hive> create temporary function parse_user_info as 'com.doit.hive.udf.UserInfoParser';
複製代碼