FGD正在破解一段密碼,他須要回答不少相似的問題:對於給定的整數a,b和d,有多少正整數對x,y,知足x<=a,y<=b,而且gcd(x,y)=d。做爲FGD的同窗,FGD但願獲得你的幫助。ios
輸入格式:
The first line of the standard input contains one integer nn (1\le n\le 50 0001≤n≤50 000),denoting the number of queries.spa
The following nn lines contain three integers each: aa, bb and dd(1\le d\le a,b\le 50 0001≤d≤a,b≤50 000), separated by single spaces..net
Each triplet denotes a single query.code
輸出格式:
Your programme should write nn lines to the standard output. The ii'th line should contain a single integer: theanswer to the ii'th query from the standard input.blog
輸入樣例#1:
2
4 5 2
6 4 3
輸出樣例#1:
3
2three
和前面那一道HDU1695GCD是同樣的
直接蒯過代碼
而後就會得到70分
這樣作的複雜度是\(O(Tn)\)
這題會超時
那麼,考慮計算的時候。
\(g(i)=(\frac bk/i)·(\frac dk/i)\)
其中必定會有連續的一段使得\(g(i)\)的值是不會變化的
(Gay神說這叫數論分塊,複雜度\(O(\sqrt{n}\))
所以,預處理出\(\mu\)的前綴和
利用數論分塊便可在\(O(T\sqrt{n})的複雜度裏計算出來\)ip
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map> #include<vector> #include<queue> using namespace std; #define MAX 101000 inline int read() { int x=0,t=1;char ch=getchar(); while((ch<'0'||ch>'9')&&ch!='-')ch=getchar(); if(ch=='-')t=-1,ch=getchar(); while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar(); return x*t; } int mu[MAX],pri[MAX],tot,s[MAX]; long long g[MAX],n,a,b,K; bool zs[MAX]; void Get() { zs[1]=true;mu[1]=1; for(int i=2;i<=n;++i) { if(!zs[i])pri[++tot]=i,mu[i]=-1; for(int j=1;j<=tot&&i*pri[j]<=n;++j) { zs[i*pri[j]]=true; if(i%pri[j])mu[i*pri[j]]=-mu[i]; else {mu[i*pri[j]]=0;break;} } } for(int i=1;i<=n;++i)s[i]=s[i-1]+mu[i]; } long long Calc(int a,int b,int K) { a/=K;b/=K; long long ans=0; int i=1; if(a>b)swap(a,b); while(i<=a) { int j=min(a/(a/i),b/(b/i)); ans+=1ll*(s[j]-s[i-1])*(a/i)*(b/i); i=j+1; } return ans; } int main() { n=100000; Get(); int T=read(); while(T--) { a=read();b=read();K=read(); printf("%lld\n",Calc(a,b,K)); } return 0; }