Network bonding is a method of combining (joining) two or more network interfaces together into a single interface. It will increase the network throughput, bandwidth and will give redundancy. If one interface is down or unplugged, the other one will keep the network traffic up and alive. Network bonding can be used in situations wherever you need redundancy, fault tolerance or load balancing networks.ide
Linux allows us to bond multiple network interfaces into single interface using a special kernel module named bonding. The Linux bonding driver provides a method for combining multiple network interfaces into a single logical 「bonded」 interface. The behaviour of the bonded interfaces depends upon the mode; generally speaking, modes provide either hot standby or load balancing services. Additionally, link integrity monitoring, may be performed.oop
According the to the official documentation, here is the types of network bonding modes.ui
Round-robin policy: It the default mode. It transmits packets in sequential order from the first available slave through the last. This mode provides load balancing and fault tolerance.this
Active-backup policy: In this mode, only one slave in the bond is active. The other one will become active, only when the active slave fails. The bond’s MAC address is externally visible on only one port (network adapter) to avoid confusing the switch. This mode provides fault tolerance.spa
XOR policy: Transmit based on [(source MAC address XOR’d with destination MAC address) modulo slave count]. This selects the same slave for each destination MAC address. This mode provides load balancing and fault tolerance.rest
Broadcast policy: transmits everything on all slave interfaces. This mode provides fault tolerance.orm
IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specification.server
Prerequisites:three
– Ethtool support in the base drivers for retrieving the speed and duplex of each slave.
– A switch that supports IEEE 802.3ad Dynamic link aggregation. Most switches will require some type of configuration to enable 802.3ad mode.ip
Adaptive transmit load balancing: channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave.
Prerequisite:
– Ethtool support in the base drivers for retrieving the speed of each slave.
Adaptive load balancing: includes balance-tlb plus receive load balancing (rlb) for IPV4 traffic, and does not require any special switch support. The receive load balancing is achieved by ARP negotiation. The bonding driver intercepts the ARP Replies sent by the local system on their way out and overwrites the source hardware address with the unique hardware address of one of the slaves in the bond such that different peers use different hardware addresses for the server.
In this handy tutorial let us see how to setup network bonding on CentOS 7 and CentOS 6.5. Though it was tested on CentOS, it should work on RHEL and Scientific Linux 6.x versions.
First, we will setup network bonding on CentOS 7.
I have three network interfaces in my CentOS 7 system, namely:
Let us combine two NICs (enp0s8, and enp0s9) and make them into one NIC namedbond0.
In CentOS 7, the bonding module is not loaded by default. Enter the following command as root user to enable it.
modprobe --first-time bonding
You can view the bonding module information using command:
modinfo bonding
Sample output:
filename: /lib/modules/3.10.0-123.el7.x86_64/kernel/drivers/net/bonding/bonding.ko alias: rtnl-link-bond author: Thomas Davis, tadavis@lbl.gov and many others description: Ethernet Channel Bonding Driver, v3.7.1 version: 3.7.1 license: GPL srcversion: E52AE00A79EA6FEFB5BF718 depends: intree: Y vermagic: 3.10.0-123.el7.x86_64 SMP mod_unload modversions signer: CentOS Linux kernel signing key sig_key: BC:83:D0:FE:70:C6:2F:AB:1C:58:B4:EB:AA:95:E3:93:61:28:FC:F4 sig_hashalgo: sha256 parm: max_bonds:Max number of bonded devices (int) parm: tx_queues:Max number of transmit queues (default = 16) (int) parm: num_grat_arp:Number of peer notifications to send on failover event (alias of num_unsol_na) (int) parm: num_unsol_na:Number of peer notifications to send on failover event (alias of num_grat_arp) (int) parm: miimon:Link check interval in milliseconds (int) parm: updelay:Delay before considering link up, in milliseconds (int) parm: downdelay:Delay before considering link down, in milliseconds (int) parm: use_carrier:Use netif_carrier_ok (vs MII ioctls) in miimon; 0 for off, 1 for on (default) (int) parm: mode:Mode of operation; 0 for balance-rr, 1 for active-backup, 2 for balance-xor, 3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, 6 for balance-alb (charp) parm: primary:Primary network device to use (charp) parm: primary_reselect:Reselect primary slave once it comes up; 0 for always (default), 1 for only if speed of primary is better, 2 for only on active slave failure (charp) parm: lacp_rate:LACPDU tx rate to request from 802.3ad partner; 0 for slow, 1 for fast (charp) parm: ad_select:803.ad aggregation selection logic; 0 for stable (default), 1 for bandwidth, 2 for count (charp) parm: min_links:Minimum number of available links before turning on carrier (int) parm: xmit_hash_policy:balance-xor and 802.3ad hashing method; 0 for layer 2 (default), 1 for layer 3+4, 2 for layer 2+3 (charp) parm: arp_interval:arp interval in milliseconds (int) parm: arp_ip_target:arp targets in n.n.n.n form (array of charp) parm: arp_validate:validate src/dst of ARP probes; 0 for none (default), 1 for active, 2 for backup, 3 for all (charp) parm: fail_over_mac:For active-backup, do not set all slaves to the same MAC; 0 for none (default), 1 for active, 2 for follow (charp) parm: all_slaves_active:Keep all frames received on an interfaceby setting active flag for all slaves; 0 for never (default), 1 for always. (int) parm: resend_igmp:Number of IGMP membership reports to send on link failure (int)
Let us create a bond0 configuration file as shown below.
Go to the directory where CentOS stores the network configuration files. By default RHEL and its clones such as CentOS, Scientific Linux stores the network configuration files under/etc/sysconfig/network-scripts/ directory.
Log in as root user.
Create bond0 configuration file:
vi /etc/sysconfig/network-scripts/ifcfg-bond0
Add the following lines.
DEVICE=bond0 NAME=bond0 TYPE=Bond BONDING_MASTER=yes IPADDR=192.168.1.150 PREFIX=24 ONBOOT=yes BOOTPROTO=none BONDING_OPTS="mode=1 miimon=100"
Note: Here, BONDING_OPTS describes the bonding mode. In our case, we will be configuring mode1(active-backup). Save and close file. 192.168.1.150 is bond0 IP address.
Now, we should modify both(enp0s8 & enp0s9) configuration files as shown below. First, let us start from enp0s8.
Edit file /etc/sysconfig/network-scripts/ifcfg-enp0s8,
vi /etc/sysconfig/network-scripts/ifcfg-enp0s8
Modify the file as shown below.
HWADDR="08:00:27:04:03:86" TYPE="Ethernet" BOOTPROTO="none" DEFROUTE="yes" PEERDNS="yes" PEERROUTES="yes" IPV4_FAILURE_FATAL="no" IPV6INIT="yes" IPV6_AUTOCONF="yes" IPV6_DEFROUTE="yes" IPV6_PEERDNS="yes" IPV6_PEERROUTES="yes" IPV6_FAILURE_FATAL="no" NAME="enp0s8" UUID="a97b23f2-fa87-49de-ac9b-39661ba9c20f" ONBOOT="yes" MASTER=bond0 SLAVE=yes
Then, Edit file /etc/sysconfig/network-scripts/ifcfg-enp0s9,
vi /etc/sysconfig/network-scripts/ifcfg-enp0s9
Modify the file as shown below.
HWADDR=08:00:27:E7:ED:8E TYPE=Ethernet BOOTPROTO=none DEFROUTE=yes PEERDNS=yes PEERROUTES=yes IPV4_FAILURE_FATAL=no IPV6INIT=yes IPV6_AUTOCONF=yes IPV6_DEFROUTE=yes IPV6_PEERDNS=yes IPV6_PEERROUTES=yes IPV6_FAILURE_FATAL=no NAME=enp0s9 UUID=e2352c46-e1f9-41d2-98f5-af24b127b3e7 ONBOOT=yes MASTER=bond0 SLAVE=yes
Save and close the files.
Now, activate the Network interfaces.
ifup ifcfg-enp0s8
ifup ifcfg-enp0s9
Now, enter the following command to make Network Manager aware the changes.
nmcli con reload
Restart network service to take effect the changes.
systemctl restart network
Now enter the following command to check whether the bonding interface bond0 is up and running:
cat /proc/net/bonding/bond0
Sample output:
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) Primary Slave: None Currently Active Slave: enp0s8 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: enp0s8 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 08:00:27:5d:ad:75 Slave queue ID: 0 Slave Interface: enp0s9 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 08:00:27:48:93:cd Slave queue ID: 0
As you see in the above output, the bond0 interface is up and running and it is configured as active-backup(mode1) mode. In this mode, only one slave in the bond is active. The other one will become active, only when the active slave fails.
To view the list of network interfaces and their IP address, enter the following command:
ip addr
Sample output:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 08:00:27:1f:3b:20 brd ff:ff:ff:ff:ff:ff inet 192.168.1.100/24 brd 192.168.1.255 scope global dynamic enp0s3 valid_lft 86130sec preferred_lft 86130sec inet6 fe80::a00:27ff:fe1f:3b20/64 scope link valid_lft forever preferred_lft forever 3: enp0s8: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000 link/ether 08:00:27:5d:ad:75 brd ff:ff:ff:ff:ff:ff 4: enp0s9: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000 link/ether 08:00:27:5d:ad:75 brd ff:ff:ff:ff:ff:ff 5: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 08:00:27:5d:ad:75 brd ff:ff:ff:ff:ff:ff inet 192.168.1.150/24 brd 192.168.1.255 scope global bond0 valid_lft forever preferred_lft forever inet6 fe80::a00:27ff:fe5d:ad75/64 scope link valid_lft forever preferred_lft forever
That’s it.
I want to assign multiple IP addresses to bond0 interface. What should i do? Very simple, just create an alias for the bond0 interface and assign multiple IP addresses.
Let me make it more clear. Say for example we want to assign IP address 192.168.1.151to bond0. To create an alias for bond0, copy the existing configuration file(ifcfg-bond0) to a new configuration file(ifcfg-bond0:1).
cp /etc/sysconfig/network-scripts/ifcfg-bond0 /etc/sysconfig/network-scripts/ifcfg-bond0:1
Then edit the alias file /etc/sysconfig/network-scripts/ifcfg-bond0:1,
vi /etc/sysconfig/network-scripts/ifcfg-bond0:1
Modify the device name and IP address as shown below.
DEVICE=bond0:1 NAME=bond0 TYPE=Bond BONDING_MASTER=yes IPADDR=192.168.1.151 PREFIX=24 ONBOOT=yes BOOTPROTO=none BONDING_OPTS="mode=1 miimon=100"
Here,
Save and close the file. Restart network service to take effect the saved changes.
systemctl restart network
Now list out the network interfaces and their IP address using the command:
ip addr
Sample output:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 08:00:27:1f:3b:20 brd ff:ff:ff:ff:ff:ff inet 192.168.1.100/24 brd 192.168.1.255 scope global dynamic enp0s3 valid_lft 86388sec preferred_lft 86388sec inet6 fe80::a00:27ff:fe1f:3b20/64 scope link valid_lft forever preferred_lft forever 3: enp0s8: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000 link/ether 08:00:27:5d:ad:75 brd ff:ff:ff:ff:ff:ff 4: enp0s9: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000 link/ether 08:00:27:5d:ad:75 brd ff:ff:ff:ff:ff:ff 5: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 08:00:27:5d:ad:75 brd ff:ff:ff:ff:ff:ff inet 192.168.1.150/24 brd 192.168.1.255 scope global bond0 valid_lft forever preferred_lft forever inet 192.168.1.151/24 brd 192.168.1.255 scope global secondary bond0:1 valid_lft forever preferred_lft forever inet6 fe80::a00:27ff:fe5d:ad75/64 scope link valid_lft forever preferred_lft forever
As you above the alias bond0:1 has been created and it’s up now.
We have seen Network bonding on CentOS 7. Now, we will see how to do it on CentOS 6.x.
I have three network interfaces, namely eth0, eth1 and eth2 in my CentOS 6.5 system. Let us combine two NICs (eth1 and eth2) and make them into one NIC named bond0.
First, let us create a bond0 configuration file as shown below.
Go to the directory where CentOS stores the network configuration files. By default RHEL and its clones such as CentOS, Scientific Linux stores the network configuration files under/etc/sysconfig/network-scripts/ directory.
Run the following commands as root user.
Create bond0 configuration file under the above mentioned directory.
vi /etc/sysconfig/network-scripts/ifcfg-bond0
Add the following lines.
DEVICE=bond0 BOOTPROTO=none ONBOOT=yes IPADDR=192.168.1.200 NETWORK=192.168.1.0 NETMASK=255.255.255.0 USERCTL=no BONDING_OPTS="mode=1 miimon=100"
Note: Here BONDING_OPTS describes the bonding mode. In our case, we will be configuring mode1(active-backup). Save and close file. 192.168.1.200 is bond0 IP address.
Next we have to load up the bond0 interface into the kernel. To do that, create a new file/etc/modprobe.d/bonding.conf,
vi /etc/modprobe.d/bonding.conf
Add the following line in it.
alias bond0 bonding
Save and close the file.
Now we should modify both(eth1 & eth2) configuration files as shown below. First, let us start from eth1.
Edit file /etc/sysconfig/network-scripts/ifcfg-eth1,
vi /etc/sysconfig/network-scripts/ifcfg-eth1
Modify the file as shown below.
DEVICE=eth1 MASTER=bond0 SLAVE=yes USERCTL=no ONBOOT=yes BOOTPROTO=none
Then Edit file /etc/sysconfig/network-scripts/ifcfg-eth2,
# vi /etc/sysconfig/network-scripts/ifcfg-eth2
Modify the file as shown below.
DEVICE=eth2 MASTER=bond0 SLAVE=yes USERCTL=no ONBOOT=yes BOOTPROTO=none
Save and close the files.
Enter the following command to load the bonding module.
modprobe bonding
Restart network service to take effect the changes.
service network restart
Now enter the following command to check whether the bonding interface bond0 is up and running:
cat /proc/net/bonding/bond0
Sample output:
Ethernet Channel Bonding Driver: v3.6.0 (September 26, 2009) Bonding Mode: fault-tolerance (active-backup) Primary Slave: None Currently Active Slave: eth1 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth1 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 08:00:27:fe:6f:bf Slave queue ID: 0 Slave Interface: eth2 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 08:00:27:34:17:c0 Slave queue ID: 0
As you see in the above output, the bond0 interface is up and running and it is configured as active-backup(mode1) mode. In this mode, only one slave in the bond is active. The other one will become active, only when the active slave fails.
To view the list of network interfaces and their IP address, enter the following command:
# ifconfig
Sample output:
bond0 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF inet addr:192.168.1.200 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fefe:6fbf/64 Scope:Link UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1 RX packets:379 errors:0 dropped:0 overruns:0 frame:0 TX packets:167 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:32354 (31.5 KiB) TX bytes:24078 (23.5 KiB) eth0 Link encap:Ethernet HWaddr 08:00:27:BE:25:49 inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:febe:2549/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1402 errors:0 dropped:0 overruns:0 frame:0 TX packets:904 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:134823 (131.6 KiB) TX bytes:124938 (122.0 KiB) eth1 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1 RX packets:285 errors:0 dropped:0 overruns:0 frame:0 TX packets:156 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:24746 (24.1 KiB) TX bytes:22956 (22.4 KiB) eth2 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1 RX packets:95 errors:0 dropped:0 overruns:0 frame:0 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:7674 (7.4 KiB) TX bytes:1364 (1.3 KiB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
As per the above output, bond0 is configured as master; eth1 and eth2 are configured as a slave.
I want to assign multiple IP addresses to bond0 interface. What should i do? Very simple, just create an alias for the bond0 interface and assign multiple IP addresses.
Let me make it more clear. Say for example we want to assign IP address 192.168.1.201to bond0. To create an alias for bond0, copy the existing configuration file(ifcfg-bond0) to a new configuration file(ifcfg-bond0:1).
cp /etc/sysconfig/network-scripts/ifcfg-bond0 /etc/sysconfig/network-scripts/ifcfg-bond0:1
Then edit the alias file /etc/sysconfig/network-scripts/ifcfg-bond0:1,
vi /etc/sysconfig/network-scripts/ifcfg-bond0:1
Modify the device name and IP address as shown below.
DEVICE=bond0:1 BOOTPROTO=none ONBOOT=yes IPADDR=192.168.1.201 NETWORK=192.168.1.0 NETMASK=255.255.255.0 USERCTL=no BONDING_OPTS="mode=1 miimon=100"
Save and close the file. Restart network service to take effect the saved changes.
service network restart
Now list out the network interfaces and their IP address using the command:
ifconfig
Sample output:
bond0 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF inet addr:192.168.1.200 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fefe:6fbf/64 Scope:Link UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1 RX packets:1048 errors:0 dropped:0 overruns:0 frame:0 TX packets:590 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:88622 (86.5 KiB) TX bytes:84340 (82.3 KiB) bond0:1 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF inet addr:192.168.1.201 Bcast:192.168.1.255 Mask:255.255.255.0 UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1 eth0 Link encap:Ethernet HWaddr 08:00:27:BE:25:49 inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:febe:2549/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1422 errors:0 dropped:0 overruns:0 frame:0 TX packets:916 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:136317 (133.1 KiB) TX bytes:126150 (123.1 KiB) eth1 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1 RX packets:942 errors:0 dropped:0 overruns:0 frame:0 TX packets:581 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:80036 (78.1 KiB) TX bytes:84266 (82.2 KiB) eth2 Link encap:Ethernet HWaddr 08:00:27:FE:6F:BF UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1 RX packets:111 errors:0 dropped:0 overruns:0 frame:0 TX packets:14 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:8916 (8.7 KiB) TX bytes:1492 (1.4 KiB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
You should see the alias bond0:1 has been created and up.