天真貝葉斯學習機 | TiDB Hackathon 優秀項目分享

Ti Hack 系列

TiDB Hackathon 2018 共評選出六組優秀項目,本系列文章將由這六組項目的成員主筆,分享他們的參賽經驗和成果。咱們很是但願本屆 Hackathon 誕生的優秀項目可以在社區中延續下去,感興趣的小夥伴們能夠加入進來哦~

本文做者是來自 DSG 團隊的楊文同窗,他們的項目《天真貝葉斯學習機》在本屆 Hackathon 中得到了三等獎+最佳創意獎。mysql

「在 TiDB Hackathon 2018 學習到很多東西,但願明年再來」git

簡述

「pd ctl 天真學習機」github

具體作法:用 naive bayes 模型來根據系統指標和人的 pd ctl 調用,來獲得一個模型去根據系統指標去自動提供 pd ctl 調用的命令。算法

1.貝葉斯算法舉例

貝葉斯模型能夠用來幹這種事:sql

好比一個媽媽根據天氣預報來跟兒子在出們的時候叮囑:json

天氣預報[ 晴, 溫度: 28, 風力: 中 ], 媽媽會說 [好好玩]
天氣預報[ 雨, 溫度: 15, 風力: 低 ], 媽媽會說 [帶上傘]
天氣預報[ 陰, 溫度: 02, 風力: 大 ], 媽媽會說 [多穿點]...

把這些輸入輸入到貝葉斯模型裏之後, 模型能夠根據天氣預報來輸出:bootstrap

天氣預報[ 晴, 溫度: 00, 風力中], 模型會說 [ 多穿點:0.7, 好好玩0.2, 帶上傘0.1]
天氣預報[ 雨, 溫度: 10, 風力大], 模型會說 [ 帶上傘:0.8, 多穿點0.1, 好好玩0.1]

這樣經過一個媽媽的叮囑就能夠訓練出一個也會根據天氣預報給出叮囑的模型。服務器

2. 初步想法

咱們能夠把一個模型單獨的部署在一個 pod 裏, 暴露一個 service ,而後集羣上每次有人去調用 pd_ctl 的時候就在後臺用 rest call 到模型服務上記錄一下操做(叮囑)和當前的系統指標(比如天氣預報). 這樣慢慢用一段時間之後,積累的操做多了之後,就能夠打開某個自動響應,或者打開自動建議應該執行的命令的功能。網絡

這樣模型能夠在某一組系統指標出現以前相似學習過的狀態以後,給出相應的建議,當這些建議都很正確的時候直接讓 pd 直接採納,徹底智能的自動化運做。ide

3. 實際 Hackathon 方案

在跟導師交流探討後發現,目前 PD 已經比較自動化了,不多須要人爲介入進行操做,須要的時候也是比較複雜的場景,或者自動化運做比較慢的場景。

咱們團隊在跟多名導師的溝通交流下,將初步想法進行了一些調整:

  • 從熱點調度策略入手,用熱點調度策略的數值去用 naive bayes 模型去訓練他們,而後再根據這些數值再去模型中去獲取建議值。
  • 統計建議值和熱點調度策略進行比較;(從開始的測試結果來看,大概有 70% 匹配,可是咱們實測發現,使用咱們模型的建議值去真正的調度,熱點 region 仍是很是均衡的)
  • 三組對照試驗:不進行調度,只打印調度數據;正常使用原來的熱點調度策略;使用原來的熱點調度策略的數值,可是使用模型訓練的建議值進行實際調度;

Hackathon 回顧

首先,介紹一下咱們團隊(DSG),分別來自:丹麥、北京(山西)、廣州。

D 先生是在比賽前一天早上到達北京的,我是比賽前一天晚上從廣州出發,於比賽當日早上 6:38 才抵達北京的。

說實話,時差和疲憊對於參賽仍是有一點影響的。

廢話很少說,我就來回顧一下個人整個參勝過程。

  • 比賽前一日 20:05 從廣州南站出發,第二天 6:38 抵達北京西站。
  • 7:58 抵達地鐵西小口

  • 8:06 通過轉轉
  • 8:12 抵達比賽所在地:東昇科技園 C-1 樓
  • 8:16 簽到,逛 PingCAP

  • 8:40 跟 D 先生匯合,瞭解貝葉斯模型
  • 9:20 DSG 團隊成員所有集結完畢

  • 10:00 比賽正式開始
  • 10:00 Hacking Time: Trello 構建整個比賽分工、準備工做、需求分析
  • 搭建 TiDB 集羣(2套)【熟悉 TiDB 集羣,實操 PD-CTL】
  • 12:17 午飯
  • 13:00 Hacking Time: 熟悉 PD Command,貝葉斯模型,導師指導,本地 TiDB 環境構建(坑),分析 PD 熱點調度,剖析調度流程,模擬熱點數據
  • 18:20 外出用餐(蘆月軒羊蠍子(西三旗店))【沾 D 先生的光,蹭吃蹭喝】
  • 20:40 回到東昇科技園
  • 20:50 ~ 第二天 1:10 Hacking Time: 模擬熱點數據,實測調度上報和獲取模型返回結果,本地測通調度參數上報和獲得模型返回值
  • 第二天 1:10 ~ 5:50 會議室休息(在此期間,個人隊友 D 先生,調好了模型,並將此模型經過 Docker 構建部署到 PD 機器上)
  • 第二天 5:50 Hacking Time: 部署修改過的 PD 服務到線上服務器,並打通 rust-nb-server,實時上報和實時獲取模型返回結果
  • 第二天 7:30 早餐
  • 第二天 8:00 正式調試
  • 第二天 9:00 抽籤肯定 Demo 時間
  • 第二天 9:00 ~ 12:00 Hacking Time: 調優
  • 第二天 12:00 ~ 12:30 午飯時間
  • 第二天 13:00 ~ 14:00 Hacking Time: PPT,調優
  • 第二天 14:30 ~ 18:30 Demo Time(B 站直播)



  • 第二天 18:30 ~ 19:00 頒獎(B 站直播)


Hackathon 實操

1. 搭建 TiDB 集羣

徹底參考文檔

測試 TiDB 集羣,可能遇到的坑(MySQL 8 client On MacOSX):

  • mysql client connect : Unknown charset 255 (MySQL 8 Client 不支持字符集,須要指定默認字符集爲 UTF8)

    mysql -hx.x.x.x --default-character-set utf8

2. 天真貝葉斯的服務接口

  • /model/service1 PUT 上報數據:
{
  "updates": [
    [
      "transfer leader from store 7 to store 2",
      [
        {
          "feature_type": "Category",
          "name": "hotRegionsCount1",
          "value": "true"
        },
        {
          "feature_type": "Category",
          "name": "minRegionsCount1",
          "value": "true"
        },
        {
          "feature_type": "Category",
          "name": "hotRegionsCount2",
          "value": "true"
        },
        {
          "feature_type": "Category",
          "name": "minRegionsCount2",
          "value": "true"
        },
        {
          "feature_type": "Category",
          "name": "srcRegion",
          "value": "7"
        }
      ]
    ],
  ]}
  • /model/service1 POST 獲取模型結果:

輸入參數:上報的參數

{
  "predictions": [
    {
      "transfer leader from store 1 to store 2": 0.27432775221072137,
      "transfer leader from store 1 to store 7": 0.6209064350448428,
      "transfer leader from store 2 to store 1": 0.024587894827775753,
      "transfer leader from store 2 to store 7": 0.01862719305134528,
      "transfer leader from store 7 to store 1": 0.02591609468013258,
      "transfer leader from store 7 to store 2": 0.03563463018518229
    }
  ]}

3. PD 集羣部署

首先將 pd-server 替換到集羣所在 ansible/resources/bin 目錄下,那如何讓集羣上的 PD 更新生效呢?

更新:

$ ansible-playbook rolling_update.yml --tags=pd

在實操過程當中, 若是你在更新到一半的時候就關門了,可能會致使整個 PD 掛掉(非集羣環境),多是由於邏輯不嚴謹所致使的問題

直接中止了 ansible,致使 PD 集羣機器節點有中止的狀況,這個時候你能夠經過如下命令啓動它。

啓動:

$ ansible-playbook start.yml --tags=pd

4. PD 調度

4.1 取消熱點數據調度

你們都覺得能夠經過配置來解決:(調度開關方法: 用 config set xxx 0 來關閉調度)

配置以下:(雖然找的地方錯誤了,可是錯打錯着,咱們來到了 Demo Time:

config set leader-schedule-limit 0
config set region-schedule-limit 0
scheduler add hot-region-scheduler
config show
config set leader-schedule-limit 4
config set region-schedule-limit 8

實測發現,根本不生效,必需要改源代碼。

func (h *balanceHotRegionsScheduler) dispatch(typ BalanceType, cluster schedule.Cluster) []*schedule.Operator {
    h.Lock()
    defer h.Unlock()
    switch typ {
    case hotReadRegionBalance:
        h.stats.readStatAsLeader = h.calcScore(cluster.RegionReadStats(), cluster, core.LeaderKind)
        // return h.balanceHotReadRegions(cluster) // 將這一行註釋
    case hotWriteRegionBalance:
        h.stats.writeStatAsLeader = h.calcScore(cluster.RegionWriteStats(), cluster, core.LeaderKind)
        h.stats.writeStatAsPeer = h.calcScore(cluster.RegionWriteStats(), cluster, core.RegionKind)
        // return h.balanceHotWriteRegions(cluster) // 將這一行註釋
    }
    return nil
}

可是,咱們要的不是不調度,而只是不給調度結果:

func (h *balanceHotRegionsScheduler) balanceHotReadRegions(cluster schedule.Cluster) []*schedule.Operator {
    // balance by leader
    srcRegion, newLeader := h.balanceByLeader(cluster, h.stats.readStatAsLeader)
    if srcRegion != nil {
        schedulerCounter.WithLabelValues(h.GetName(), "move_leader").Inc()
        // step := schedule.TransferLeader{FromStore: srcRegion.GetLeader().GetStoreId(), ToStore: newLeader.GetStoreId()} // 修改成不返回值或者返回 _
        _ = schedule.TransferLeader{FromStore: srcRegion.GetLeader().GetStoreId(), ToStore: newLeader.GetStoreId()}
        // return []*schedule.Operator{schedule.NewOperator("transferHotReadLeader", srcRegion.GetID(), srcRegion.GetRegionEpoch(), schedule.OpHotRegion|schedule.OpLeader, step)} // 註釋這一行,並 return nil
        return nil
    }

    // balance by peer
    srcRegion, srcPeer, destPeer := h.balanceByPeer(cluster, h.stats.readStatAsLeader)
    if srcRegion != nil {
        schedulerCounter.WithLabelValues(h.GetName(), "move_peer").Inc()
        return []*schedule.Operator{schedule.CreateMovePeerOperator("moveHotReadRegion", cluster, srcRegion, schedule.OpHotRegion, srcPeer.GetStoreId(), destPeer.GetStoreId(), destPeer.GetId())}
    }
    schedulerCounter.WithLabelValues(h.GetName(), "skip").Inc()
    return nil
}

......

func (h *balanceHotRegionsScheduler) balanceHotWriteRegions(cluster schedule.Cluster) []*schedule.Operator {
    for i := 0; i < balanceHotRetryLimit; i++ {
        switch h.r.Int() % 2 {
        case 0:
            // balance by peer
            srcRegion, srcPeer, destPeer := h.balanceByPeer(cluster, h.stats.writeStatAsPeer)
            if srcRegion != nil {
                schedulerCounter.WithLabelValues(h.GetName(), "move_peer").Inc()
                fmt.Println(srcRegion, srcPeer, destPeer)
                // return []*schedule.Operator{schedule.CreateMovePeerOperator("moveHotWriteRegion", cluster, srcRegion, schedule.OpHotRegion, srcPeer.GetStoreId(), destPeer.GetStoreId(), destPeer.GetId())} // 註釋這一行,並 return nil
                return nil
            }
        case 1:
            // balance by leader
            srcRegion, newLeader := h.balanceByLeader(cluster, h.stats.writeStatAsLeader)
            if srcRegion != nil {
                schedulerCounter.WithLabelValues(h.GetName(), "move_leader").Inc()
                // step := schedule.TransferLeader{FromStore: srcRegion.GetLeader().GetStoreId(), ToStore: newLeader.GetStoreId()} // 修改成不返回值或者返回 _
                _ = schedule.TransferLeader{FromStore: srcRegion.GetLeader().GetStoreId(), ToStore: newLeader.GetStoreId()}

                // return []*schedule.Operator{schedule.NewOperator("transferHotWriteLeader", srcRegion.GetID(), srcRegion.GetRegionEpoch(), schedule.OpHotRegion|schedule.OpLeader, step)} // 註釋這一行,並 return nil
                return nil
            }
        }
    }

    schedulerCounter.WithLabelValues(h.GetName(), "skip").Inc()
    return nil
}

當修改了 PD 再從新編譯獲得 pd-server,將其放到

tidb-ansible/resources/bin/pd-server 並替換原來的文件,而後執行

ansible-playbook rolling_update.yml --tags=pd,便可重啓 pd-server 服務。

在調優的過程當中發現,當前 hot-region-scheduler 的調度時對於目標機器的選擇並非最優的,代碼以下:

https://github.com/pingcap/pd/blob/master/server/schedulers/hot_region.go#L374

簡述:循環遍歷 candidateStoreIDs 的時候,若是知足條件有多臺,那麼最後一個總會覆蓋前面已經存儲到 destStoreID 裏面的數據,最終咱們拿到的 destStoreID 有可能不是最優的。

// selectDestStore selects a target store to hold the region of the source region.
// We choose a target store based on the hot region number and flow bytes of this store.
func (h *balanceHotRegionsScheduler) selectDestStore(candidateStoreIDs []uint64, regionFlowBytes uint64, srcStoreID uint64, storesStat core.StoreHotRegionsStat) (destStoreID uint64) {
    sr := storesStat[srcStoreID]
    srcFlowBytes := sr.TotalFlowBytes
    srcHotRegionsCount := sr.RegionsStat.Len()

    var (
        minFlowBytes    uint64 = math.MaxUint64
        minRegionsCount        = int(math.MaxInt32)
    )
    for _, storeID := range candidateStoreIDs {
        if s, ok := storesStat[storeID]; ok {
            if srcHotRegionsCount-s.RegionsStat.Len() > 1 && minRegionsCount > s.RegionsStat.Len() {
                destStoreID = storeID
                minFlowBytes = s.TotalFlowBytes
                minRegionsCount = s.RegionsStat.Len()
                continue // 這裏
            }
            if minRegionsCount == s.RegionsStat.Len() && minFlowBytes > s.TotalFlowBytes &&
                uint64(float64(srcFlowBytes)*hotRegionScheduleFactor) > s.TotalFlowBytes+2*regionFlowBytes {
                minFlowBytes = s.TotalFlowBytes
                destStoreID = storeID
            }
        } else {
            destStoreID = storeID
            return
        }
    }
    return
}

4.2 PD 重要監控指標詳解之 HotRegion:

  • Hot write Region’s leader distribution:每一個 TiKV 實例上是寫入熱點的 leader 的數量
  • Hot write Region’s peer distribution:每一個 TiKV 實例上是寫入熱點的 peer 的數量
  • Hot write Region’s leader written bytes:每一個 TiKV 實例上熱點的 leader 的寫入大小
  • Hot write Region’s peer written bytes:每一個 TiKV 實例上熱點的 peer 的寫入大小
  • Hot read Region’s leader distribution:每一個 TiKV 實例上是讀取熱點的 leader 的數量
  • Hot read Region’s peer distribution:每一個 TiKV 實例上是讀取熱點的 peer 的數量
  • Hot read Region’s leader read bytes:每一個 TiKV 實例上熱點的 leader 的讀取大小
  • Hot read Region’s peer read bytes:每一個 TiKV 實例上熱點的 peer 的讀取大小

本次咱們只 hack 驗證了 Write Region Leader 這部分,因此咱們重點關注一下監控和問題:

  • Hot write Region's leader distribution
監控數據有必定的延時(粗略估計1-2分鐘)

5. 模擬熱點數據

  • 從本地往服務器 load 數據:

修改 tidb-bench 的 Makefile#load 模塊對應的主機地址,而後執行 make tbl, make load 便可往服務器 load 數據了。

注意,這裏你也須要進行一些配置修改:--default-character-set utf8

犯的錯:受限於本地-服務器間網絡帶寬,導入數據很慢。

  • 線上服務器上:
$ ./go-ycsb run mysql -p mysql.host=10.9.x.x -p mysql.port=4000 -p mysql.db=test1 -P workloads/workloada

注:go-ycsb 支持 insert,也支持 update,你能夠根據你的須要進行相對應的調整 workloada#recordcountworkloada#operationcount 參數。

6.本地構建 rust-nb-server

rust 一天速成……

Demo Time 的時候聽好幾個團隊都說失敗了。我之前也嘗試過,可是被編譯的速度以及耗能給擊敗了。

環境均可以把你 de 自信心擊潰。

rustup install nightly
cargo run
...

Mac 本地打包 Linux 失敗:缺乏 std 庫,經過 Docker 臨時解決。

7. 導師指導

從比賽一開始,導師團就很是積極和主動,直接去每一個項目組,給予直接指導和建議,咱們遇到問題去找導師時,他們也很是的配合。

導師不只幫咱們解決問題(特別是熱點數據構建,包括對於代碼級別的指導),還跟咱們一塊兒探討課題方向和實際可操做性,以及能夠達到的目標。

很是感謝!!!

咱們的準備和主動性真的不足,值得反思--也但願你們之後不要怕麻煩,有問題就大膽的去問。

Hackathon Demo

整個 Demo show 進行的很是順利,爲每個團隊點贊!

不少團隊的做品都讓人尖叫,可想而知他們的做品是多麼的酷炫和牛逼,印象中只有一個團隊在 Demo 環境出現了演示時程序崩潰的問題(用Java Netty 基於 TiKV 作的 memcache(實現了大部分的協議))。

Hackathon 頒獎

遺憾!!!

咱們 DSG 團隊榮獲三等獎+最佳創意兩項大獎,可是很遺憾我未能跟團隊一塊兒分享這一刻。

由於我要趕着去火車站,因此在週日下午6點的時候,我跟隊友和一些朋友作別後,我就去火車站了,後面幾組的 Demo Show 也很很是遺憾未能參加。

得獎感言:

謝謝 DSG 團隊,謝謝導師,謝謝評委老師,謝謝 PingCAP 給你們籌備了這麼好的一次黑客馬拉松比賽活動。

TiDB Hackathon 2018 總結

本次比賽的各個方面都作的完美,除了網絡。
  1. 環境(必定要提早準備)----此次被坑了很多時間和精力;
  2. 配置文檔中有一些注意事項,必定要認真閱讀:ext4 必需要每臺機器都更新;
  • 能夠在執行的時候增長參數來避免
  • ansible-playbook bootstrap.yml --extra-vars "dev_mode=True"
  1. 若是磁盤掛載有問題,能夠從新清除數據後再從新啓動;
  • ansible-playbook unsafe_cleanup_data.yml

(https://github.com/pingcap/docs/blob/master/op-guide/ansible-operation.md)

參考資料

  1. https://github.com/pingcap/pd
  2. tidb-bench tpch
  3. https://github.com/pingcap/go-ycsb
  4. Ansible 部署
  5. PD 重要監控指標詳解
  6. 使用 TiDB-Ansible 升級 TiDB
  7. 在線代碼格式化
  8. rust-nb-server

後續楊文同窗會在 我的博客 中更新更多項目細節。

相關文章
相關標籤/搜索