幾年前買的Raspberry P 1 (CPU: 700MHz ARM, Memory: 512MB) 已積灰好久, 偶然發現嘗試作使用它的拍照功能作監控,以下圖:java
一、系統安裝與配置git
首先安裝 raspbian-jessie-lite (官方下載),在windows下使用win32diskimager寫入SD卡比較容易。github
其次插入SD卡,接通電源啓動系統。對於沒有顯示器(也沒有外接的鍵盤)的狀況下,只能選擇網絡方式訪問。遇到了一些問題:算法
(1) 雖然能夠經過家庭路由器獲得DHCP分配的IP(或者根據ARP,甚至使用nmap掃描)獲得這個樹莓派的IP,可是前提要求網絡環境比較高。windows
(2) 從2016.11月之後,Raspbian系統默認關閉SSH(估計是考慮安全性),也就是系統啓動後SSH服務根本沒啓動。安全
這種狀況下只能經過修改系統裏面的IP等相關參數使得啓動後能獲得固定的IP。對於在windows下讀寫Linux分區始終是個不方便的事。網絡
查找了多方面資料,只有Ext2Fsd能知足要求,可是按照後插入SD卡卻變成了下圖這樣:oracle
結果Linux分區沒法成爲一個被Ext2Fsd識別的卷,因此這個辦法就到這裏終止了。也嘗試過將整個系統刻入SD卡(使用EXT3),可是系統沒法啓動。app
最後,只能經過Linux系統來讀寫這個Linux分區。在這裏使用back track 5來製做一個U盤系統而後重啓筆記本,嘗試經過筆記本修改SD卡里面的系統參數。ssh
SD卡在BT5下掛載成功:
而後修改 /etc/network/interfaces文件,配置一個固定IP,以下:
如今IP肯定了,可是還有SSH默認狀況下是關閉的,因此須要開機啓動,修改/etc/rc.local文件,加入SSH的啓動命令,以下圖:
而後umount SD卡後插入樹莓派啓動,狀態燈顯示工做正常,以下圖:
而後使用筆記本嘗試ping&ssh:
C:\>ping 192.168.0.125 Pinging 192.168.0.125 with 32 bytes of data: Reply from 192.168.0.125: bytes=32 time=3ms TTL=64 Reply from 192.168.0.125: bytes=32 time=4ms TTL=64 Reply from 192.168.0.125: bytes=32 time=2ms TTL=64 Reply from 192.168.0.125: bytes=32 time=3ms TTL=64 Ping statistics for 192.168.0.125: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 2ms, Maximum = 4ms, Average = 3ms
The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright. Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law. Last login: Thu Aug 10 20:37:32 2017 from 192.168.0.210 pi@x:~$ pi@x:~$
至此,系統配置成功,下面能夠經過raspi-config命令啓用SSH功能了,而後把rc.local中的啓動命令刪除,另外更改密碼。
2. 監控拍攝對比
經過raspi-config工具啓用Camera功能並把攝像模塊插入,而後就可使用raspistill工具進行拍照了。
再這裏使用Java開發定時拍照任務並作圖像對比,因爲Camera不能經過Java直接調用,在這裏就使用了jrpicam (https://github.com/Hopding/JRPiCam) 開源組件,
經過調用raspistill進行拍照而後獲得圖像,整個工程的創建以下圖,我將從github獲得的源碼一塊兒合併到工程裏面,工程就叫作smallcat吧(像一隻貓同樣盯着):
2個類,一個Camera類是拍照得到圖像的:
public class Camera { private RPiCamera piCamera = null; private String defaultSaveDir = "/home/pi/diff-photo"; public Camera() { try { piCamera = new RPiCamera(defaultSaveDir); } catch (FailedToRunRaspistillException e) { e.printStackTrace(); } } public BufferedImage takeOnePhoto() throws Exception { piCamera.setAWB(AWB.AUTO) // Change Automatic White Balance setting to automatic .setDRC(DRC.OFF) // Turn off Dynamic Range Compression .setContrast(100) .setSharpness(100) .setQuality(100) .setTimeout(1) .setBrightness(75) .turnOnPreview() // Turn on image preview .setEncoding(Encoding.PNG); // Change encoding of images to PNG BufferedImage buffImg = piCamera.takeBufferedStill(800, 600); // Take image and store in BufferedImage return buffImg; } }
還有一個MyCat是主任務類,獲取圖像後對比,符合條件後保存圖像:
public class MyCat { private Camera camera = null; private double diffPercentThreshold = 4.0; private String diffPhotoSaveDir = "/home/pi/diff-photo/"; public static void main(String[] args) { System.out.println("My-Cat starting..."); MyCat cat = new MyCat(); cat.wakeUpMyCat(); System.out.println("My-Cat started!"); } public void wakeUpMyCat() { camera = new Camera(); Thread inspector = new Thread(new CatInspector()); inspector.setName("Cat-Inspector"); inspector.start(); } class CatInspector implements Runnable { private BufferedImage previousPhoto = null; @Override public void run() { while (true) { try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e1) { System.out.println("Cat Inspector Interrupted"); return; } try { BufferedImage currentPhoto = camera.takeOnePhoto(); if (previousPhoto != null) { if (isDifferent(currentPhoto)) { foundDiffPhoto(currentPhoto); } } else { // Save the first photo foundDiffPhoto(currentPhoto); } previousPhoto = currentPhoto; // Set current photo as previous } catch (Exception e) { e.printStackTrace(); } } } /** * Process different photo */ private void foundDiffPhoto(BufferedImage photo) { String fileName = new SimpleDateFormat("yyyyMMddHHmmss").format(new Date()); File saveFile = new File(diffPhotoSaveDir + fileName + ".png"); try { ImageIO.write(photo, "png", saveFile); System.out.println("New image saved to: " + saveFile.getAbsolutePath()); } catch (IOException e) { System.out.println("Save image error: "); e.printStackTrace(); } } /** * Compare current photo with previous photo */ private boolean isDifferent(BufferedImage currentPhoto) { int currentWidth = currentPhoto.getWidth(); int currentHeight = currentPhoto.getHeight(); int previousWidth = previousPhoto.getWidth(); int previousHeight = previousPhoto.getHeight(); if ((currentWidth != previousWidth) || (currentHeight != previousHeight)) { System.err.println("Error: Images dimensions mismatch"); System.exit(1); } long diff = 0; // Find RGB difference for (int y = 0; y < currentHeight; y++) { for (int x = 0; x < currentWidth; x++) { int rgb1 = currentPhoto.getRGB(x, y); int rgb2 = previousPhoto.getRGB(x, y); int r1 = (rgb1 >> 16) & 0xff; int g1 = (rgb1 >> 8) & 0xff; int b1 = (rgb1) & 0xff; int r2 = (rgb2 >> 16) & 0xff; int g2 = (rgb2 >> 8) & 0xff; int b2 = (rgb2) & 0xff; diff += Math.abs(r1 - r2); diff += Math.abs(g1 - g2); diff += Math.abs(b1 - b2); } } double n = currentWidth * currentHeight * 3; double p = diff / n / 255.0; double diffPercent = (p * 100.0); System.out.println("Diff percent: " + diffPercent); return diffPercent > diffPercentThreshold; } } }
圖像的類似性匹配是一個複雜的論題,這裏使用最簡單的RGB值比對(複雜的算法這個小樹莓很難承受),每次比對後睡眠3秒鐘後面再執行任務。
打包jar放到樹莓派上面執行吧,但首先須要安裝下JDK:
# sudo apt-get update # sudo apt-get install oracle-java7-jdk
3. 結果如何 ?
(1) 獲得記錄的兩張圖片以下(類似比例調試到一個比較合適的值)。
(2) 這個攝像頭確實比較差,嘗試調整參數效果也不理想,沒有自動對焦等功能對於監控來講實際上用起來困難。
(3) 簡單的RGB循環對比,CPU一會兒撐到80-90%,這個單核的700MHz CPU作這類工做肯定有點困難,高負載的時候SSH常常卡頓。
(4) 總之,實用性不強。