//eva 圖像清晰度評價算法算法
double EvaImageDefinition(IplImage *roiImg) { _IplROI *rect=roiImg->roi; int height=rect->height; int width=rect->width; uchar *pData=(uchar *)roiImg->imageData; int step=roiImg->widthStep; int sumD1=0; int sumD2=0; for(int y=rect->yOffset+1;y<rect->yOffset+height-1;++y) { for(int x=rect->xOffset+1;x<rect->xOffset+rect->width-1;++x) { uchar value=pData[y*step+x]; sumD1+=(abs(value-pData[(y-1)*step+x-1])+ abs(value-pData[(y-1)*step+x+1])+ abs(value-pData[(y+1)*step+x-1])+ abs(value-pData[(y+1)*step+x+1]))*707; sumD2+=abs(value-pData[y*step+x-1])+ abs(value-pData[y*step+x+1])+ abs(value-pData[(y+1)*step+x])+ abs(value-pData[(y-1)*step+x]); } } return (sumD1/707.0+sumD2)/((height-2)*(width-2)); }
//Tenegrad 圖像清晰度評價算法 opencv實現scala
double TenegradImageDefinition (IplImage* src) { IplImage* sobelX = cvCreateImage( cvSize(src->width,src->height), IPL_DEPTH_16S, 1 ); IplImage* sobelY = cvCreateImage( cvSize(src->width,src->height), IPL_DEPTH_16S, 1 ); IplImage* sum = cvCreateImage( cvSize(src->width,src->height), IPL_DEPTH_16S, 1 ); cvSobel(src,sobelX,1,0,3); cvSobel(src,sobelY,0,1,3); cvAbs(sobelX,sobelX); cvAbs(sobelY,sobelY); cvAdd(sobelX,sobelY,sum); CvScalar scalar=cvSum(sum); cvReleaseImage(&sobelX); cvReleaseImage(&sobelY); cvReleaseImage(&sum); return scalar.val[0]/(src->width*src->height); }