class std::packaged_task被用來同時存儲callable object,以及該callable object的返回值(也多是個異常).ios
#include <iostream> #include <thread> #include <future> #include <exception> int main() { std::packaged_task<int(const int&)> t1; //空的packaged_task即沒有shared state,也沒有callable object. std::packaged_task<int(const int&)> t2([](const int& number) { return 10; }); //構造函數,運行時候構建一個shared state,而且存儲一個callable object進去. t1 = std::move(t2); //移動賦值運算符.這樣一來t2中的shared state和callable object都轉移到了t1中,t2不可再使用. std::future<int> result = t1.get_future(); std::thread t3(std::move(t1), 20); //此時t1處於無效狀態. t3.detach(); //t3成爲一個獨立的線程. int value = result.get(); //若是t3內的callable object尚未執行完成,那麼會阻塞調用result.get()的線程直到t3類的callable object調用完成. std::cout << "result: " << value << std::endl; return 0; }
----------------------------我是分割線------------------------------函數
std::packaged_task構造函數:this
packaged_task() noexcept; template <class Fn> explicit packaged_task (Fn&& fn); template <class Fn, class Alloc> explicit packaged_task (allocator_arg_t aa, const Alloc& alloc, Fn&& fn); packaged_task (const packaged_task&) = delete; //不支持拷貝. packaged_task (packaged_task&& x) noexcept;
1,默認構造函數構建一個std::packaged_task對象,即沒有shared state,也沒有callable object.spa
2,顯式構造函數接受一個callable object初始化std::packaged_task。同時建立一個not ready的shared state.線程
3,被刪除了的copy-constructor.code
4,移動構造函數,被移動的對象再也不可用,且當前對象得到被移動對象的callable object和shared state.對象
std::packaged_task::get_futureci
該函數返回一個std::future對象且該std::future與當前std::packaged_task共同使用同一個shared state.這樣也就意味着,若是咱們對被返回出來的std::future調用get(),wait()等,若是std::packaged_task中的callable object未執行完成(也就是shared state還處於not ready狀態),這樣就會阻塞當前正在調用get()或者wait()的線程.get
future<Ret> get_future();
#include <iostream> #include <thread> #include <future> #include <string> int function(const int& number) { return number * 3; } int main() { std::packaged_task<int(const int&)> t1(function); std::future<int> result = t1.get_future(); //此時result 和 t1共享shared state. std::thread t2(std::move(t1), 20); //t1被移動變成不可用狀態. t2.detach(); int value = result.get(); //這裏調用get(),若是t2未執行完成(也就是shared state處於not ready狀態),會block當前調用get()的線程(這裏是main線程). std::cout << "value: " << value << std::endl; return 0; }
std::packaged_task::make_ready_at_thread_exitstring
調用當前std::packaged_task中的callable object以一個獨立的線程運行該callable object,並轉發參數進去callable object,可是callable object調用完成後並非當即把該std::packaged_task中的shared state設置爲ready,而是直到該線程徹底結束的時候才設爲ready.
void make_ready_at_thread_exit (args... args);
std::packaged_task::operator=
該std::packaged_task對象的拷貝賦值運算被刪除了,也就是說std::packaged_task對象不能被拷貝.
可是能夠被移動,被移動的std::packaged_task的shared state和callable object被移動當前std::packaged_task.被移動對象變成不可用的狀態.
packaged_task& operator= (packaged_task&& rhs) noexcept; packaged_task& operator= (const packaged_task&) = delete;//拷貝構造函數被刪除了.
std::packaged_task::operator()
調用當前對象內的callable object,並轉發參數進去(不過須要注意的是若是咱們經過operator()調用callable object並非並行的):
1,若是當前std::packaged_task中的callable object執行完成,則callable object的返回值被存儲到當前std::packaged_task的shared state中,且將該shared state的狀態設置爲ready.
2,若是當前的std::packaged_task中的callable object在執行過程當中拋出了異常,那麼該異常會被捕獲,也被存儲在shared state中,而且該shared state被設置爲ready.
#include <iostream> #include <thread> #include <future> #include <string> #include <utility> class Object { private: int number; public: Object(); ~Object() = default; int& operator()(const int& number)noexcept; }; Object::Object() :number(1) { // } int& Object::operator()(const int& number)noexcept { this->number = 20 * number; std::this_thread::sleep_for(std::chrono::seconds(2)); return (this->number); } class MyObject { private: int number; public: inline MyObject():number(1){} ~MyObject() = default; int getNumber(const int& num)noexcept { return (this->number * num); } }; int function(const int& number) { return number * 3; } int main() { //callable object case 1: std::packaged_task<int(const int&)> t1(function); std::future<int> result = t1.get_future(); //此時result 和 t1共享shared state. std::thread t2(std::move(t1), 20); //t1被移動變成不可用狀態. t2.detach(); int value = result.get(); //這裏調用get(),若是t2未執行完成(也就是shared state處於not ready狀態),會block當前調用get()的線程(這裏是main線程). std::cout << "value: " << value << std::endl; //callable object case 2: try { Object object; std::packaged_task<int& (const int&)noexcept> t3(object); std::future<int&> result1 = t3.get_future(); //t3(20); //調用callable object可是並不會並行調用. std::thread t4(std::move(t3), 20); t4.detach(); std::cout << " test " << std::endl; int value1 = result1.get(); std::cout << "value1: " << value1 << std::endl; }catch (const std::exception& e) { std::cerr << "exception!" << std::endl; } //callable object case 3: MyObject myObject; std::function<int(const int&)> memberFunction = std::bind(&MyObject::getNumber, &myObject, std::placeholders::_1); std::packaged_task<int(const int&)> t5(memberFunction); std::future<int> result2 = t5.get_future(); std::thread t6(std::move(t5), 20); t6.detach(); int value2 = result2.get(); std::cout << "value2: " << value2 << std::endl; return 0; }
std::packaged_task::reset
當咱們執行完了callable object(不管是經過當前std::packaged_task的operator(),仍是經過std::thread),當前std::packaged_task對象內的shared state都被設置爲了ready,這樣也就形成了咱們經過調用當前std::packaged_task對象的get_future()函數得到的std::future只能get()一次,
那麼咱們想要再次執行該callable object怎麼辦呢?這個時候就須要調用當前std::packaged_task對象的reset()函數了給當前std::packaged_task對象建立一個新的shared state且處於not ready狀態.
void reset();
#include <iostream> #include <thread> #include <future> #include <string> int getNumber(const int& number) { return number * 20; } int main() { std::packaged_task<int(const int&)> package(getNumber); std::future<int> result = package.get_future(); package(20); int value = result.get(); std::cout << "value(now shared state is ready): " << value << std::endl; std::cout << "reset the shared state." << std::endl; package.reset(); std::future<int> result2 = package.get_future(); std::thread t2(std::move(package), 40); //注意這裏用了std::move(),package對象會再也不可用. t2.detach(); int value2 = result2.get(); std::cout << " value2(now share state is again ready): " << value2 << std::endl; return 0; }