之前的公司和如今的公司,都用到了hadoop和hdfs。一直沒入門,今天照着官網寫了一個hadoop worldcount demohtml
1. hadoop是一個框架,什麼是框架,spring是一個框架、mybatis是一個框架,框架是把系統中通用的功能寫進去,減小開發工做量。好比基於spring boot開發一個web應用,直接寫一個java類,加一些註解,打成jar包,java -jar demo.java即完成應用開發。java
spring boot也是基於java serlet、tomcat、jetty等封裝的一個框架,有了這個框架,咱們就不用再寫servlet實現類,配置web.xml等重複工做web
2. hadoop須要的數據存放在hdfs裏面,這裏參照官網,在本機運行了一個僞分佈式的hdfsspring
3. demo組成,寫worldcount類,打成jar包,放到本機hadoop運行,從hdfs讀文件內容,把結果寫到hdfs中apache
4. 注意參考官網tomcat
mapreduce官網: http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0mybatis
pom.xml框架
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.gxf</groupId> <artifactId>hadoop_demo</artifactId> <version>1.0-SNAPSHOT</version> <dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-core</artifactId> <version>1.2.1</version> </dependency> </dependencies> </project>
WordCount.java這個直接從官網copy過來的maven
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
這裏沒有加package,由於我搞不定,因此去掉了包名
接着就是打成jar包、準備文本文件放到hdfs、使用hadoop運行jar、查看結果。這些步驟在官網上有