建立表:
hive> CREATE TABLE pokes (foo INT, bar STRING);
Creates a table called pokes with two columns, the first being an integer and the other a stringhtml
建立一個新表,結構與其餘同樣
hive> create table new_table like records;java
建立分區表:
hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);linux
加載分區表數據:
hive> load data local inpath '/home/Hadoop/input/hive/partitions/file1' into table logs partition (dt='2001-01-01',country='GB');express
展現表中有多少分區:
hive> show partitions logs;api
展現全部表:
hive> SHOW TABLES;
lists all the tables
hive> SHOW TABLES '.*s';數組
lists all the table that end with 's'. The pattern matching follows Java regular
expressions. Check out this link for documentation http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.htmlapp
顯示錶的結構信息
hive> DESCRIBE invites;
shows the list of columns函數
更新表的名稱:
hive> ALTER TABLE source RENAME TO target;oop
添加新一列
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
刪除表:
hive> DROP TABLE records;
刪除表中數據,但要保持表的結構定義
hive> dfs -rmr /user/hive/warehouse/records;this
從本地文件加載數據:
hive> LOAD DATA LOCAL INPATH '/home/hadoop/input/ncdc/micro-tab/sample.txt' OVERWRITE INTO TABLE records;
顯示全部函數:
hive> show functions;
查看函數用法:
hive> describe function substr;
查看數組、map、結構
hive> select col1[0],col2['b'],col3.c from complex;
內鏈接:
hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
查看hive爲某個查詢使用多少個MapReduce做業
hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
外鏈接:
hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
in查詢:Hive不支持,但能夠使用LEFT SEMI JOIN
hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
Map鏈接:Hive能夠把較小的表放入每一個Mapper的內存來執行鏈接操做
hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
INSERT OVERWRITE TABLE ..SELECT:新表預先存在
hive> FROM records2
> INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year
> INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year
> INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;
CREATE TABLE ... AS SELECT:新表表預先不存在
hive>CREATE TABLE target AS SELECT col1,col2 FROM source;
建立視圖:
hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
查看視圖詳細信息:hive> DESCRIBE EXTENDED valid_records;