https://www.hackerrank.com/contests/w31/challenges/colliding-circles/problem
設E(n)爲序列長度爲n時的指望值。
\[ \begin{aligned} E(n-1)=&E(n)+\frac1{n\choose2}\sum_{0\leq i<j\leq n}2r_ir_j\\ =&E(n)+\frac1{n\choose2}\left[\left(\sum r_i\right)^2-\sum r_i^2\right]\\=&E(n)+\frac1{n\choose2}\left[\left(\sum r_i\right)^2-E(n)\right]\\ \end{aligned} \]
\(O(n)\)遞推。spa
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 100003; double a[N], sum = 0, E[N]; int n, k; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%lf", &a[i]), sum += a[i], E[n] += a[i] * a[i]; for (int i = 1; i <= k; ++i) { E[n - 1] = (1.0 - (2.0 / n / (n - 1))) * E[n] + sum * sum * 2 / n / (n - 1); --n; } printf("%.10lf\n", E[n] * acos(-1)); return 0; }