談到阻塞,相信你們都不會陌生了。阻塞的應用場景真的多得不要不要的,好比 生產-消費模式,限流統計等等。什麼 ArrayBlockingQueue、 LinkedBlockingQueue、DelayQueue 等等,都是阻塞隊列的實現啊,多簡單!java
阻塞,通常有兩個特性很亮眼:1. 不耗 CPU 等待;2. 線程安全;node
額,要這麼說也 OK 的。畢竟,咱們遇到的問題,到這裏就夠解決了。可是有沒有想過,這容器的阻塞又是如何實現的呢?linux
好吧,翻開源碼,也很簡單了:(好比 ArrayBlockingQueue 的 take、put….)安全
// ArrayBlockingQueueapp
/**less
Inserts the specified element at the tail of this queue, waitingide
for space to become available if the queue is full.工具
@throws InterruptedException {@inheritDoc}ui
@throws NullPointerException {@inheritDoc}this
*/
public void put(E e) throws InterruptedException {
checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) // 阻塞的點 notFull.await(); enqueue(e); } finally { lock.unlock(); }
}
/**
Inserts the specified element at the tail of this queue, waiting
up to the specified wait time for space to become available if
the queue is full.
@throws InterruptedException {@inheritDoc}
@throws NullPointerException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException { checkNotNull(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) { if (nanos <= 0) return false; // 阻塞的點 nanos = notFull.awaitNanos(nanos); } enqueue(e); return true; } finally { lock.unlock(); }
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) // 阻塞的點 notEmpty.await(); return dequeue(); } finally { lock.unlock(); }
}
看來,最終都是依賴了 AbstractQueuedSynchronizer 類(著名的AQS)的 await 方法,看起來像那麼回事。那麼這個同步器的阻塞又是如何實現的呢?
Java的代碼老是好跟蹤的:
// AbstractQueuedSynchronizer.await()
/**
Implements interruptible condition wait.
<ol>
<li> If current thread is interrupted, throw InterruptedException.
<li> Save lock state returned by {@link #getState}.
<li> Invoke {@link #release} with saved state as argument,
throwing IllegalMonitorStateException if it fails.
<li> Block until signalled or interrupted.
<li> Reacquire by invoking specialized version of
{@link #acquire} with saved state as argument.
<li> If interrupted while blocked in step 4, throw InterruptedException.
</ol>
*/
public final void await() throws InterruptedException {
if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { // 此處進行真正的阻塞 LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) // clean up if cancelled unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode);
}
如上,能夠看到,真正的阻塞工做又轉交給了另外一個工具類: LockSupport 的 park 方法了,這回跟鎖扯上了關係,看起來已經愈來愈接近事實了:
// LockSupport.park()
/**
Disables the current thread for thread scheduling purposes unless the
permit is available.
<p>If the permit is available then it is consumed and the call returns
immediately; otherwise
the current thread becomes disabled for thread scheduling
purposes and lies dormant until one of three things happens:
<ul>
<li>Some other thread invokes {@link #unpark unpark} with the
current thread as the target; or
<li>Some other thread {@linkplain Thread#interrupt interrupts}
the current thread; or
<li>The call spuriously (that is, for no reason) returns.
</ul>
<p>This method does <em>not</em> report which of these caused the
method to return. Callers should re-check the conditions which caused
the thread to park in the first place. Callers may also determine,
for example, the interrupt status of the thread upon return.
@param blocker the synchronization object responsible for this
thread parking
@since 1.6
*/
public static void park(Object blocker) {
Thread t = Thread.currentThread(); setBlocker(t, blocker); UNSAFE.park(false, 0L); setBlocker(t, null);
}
看得出來,這裏的實現就比較簡潔了,先獲取當前線程,設置阻塞對象,阻塞,而後解除阻塞。
好吧,到底什麼是真正的阻塞,咱們仍是不得而知!
UNSAFE.park(false, 0L); 是個什麼東西? 看起來就是這一句起到了最關鍵的做用呢!但因爲這裏已是 native 代碼,咱們已經沒法再簡單的查看源碼了!那咋整呢?
那不行就看C/C++的源碼唄,看一下 parker 的定義(park.hpp):
class Parker : public os::PlatformParker {
private:
volatile int _counter ;
Parker * FreeNext ;
JavaThread * AssociatedWith ; // Current association
public:
Parker() : PlatformParker() {
_counter = 0 ; FreeNext = NULL ; AssociatedWith = NULL ;
}
protected:
~Parker() { ShouldNotReachHere(); }
public:
// For simplicity of interface with Java, all forms of park (indefinite,
// relative, and absolute) are multiplexed into one call. c中暴露出兩個方法給java調用
void park(bool isAbsolute, jlong time);
void unpark();
// Lifecycle operators
static Parker Allocate (JavaThread t) ;
static void Release (Parker * e) ;
private:
static Parker * volatile FreeList ;
static volatile int ListLock ;
};
那 park() 方法究竟是如何實現的呢? 實際上是繼承的 os::PlatformParker 的功能,也就是平臺相關的私有實現,以 Linux 平臺實現爲例(os_linux.hpp):
// Linux中的parker定義
class PlatformParker : public CHeapObj<mtInternal> {
protected:
enum { REL_INDEX = 0, ABS_INDEX = 1 }; int _cur_index; // which cond is in use: -1, 0, 1 pthread_mutex_t _mutex [1] ; pthread_cond_t _cond [2] ; // one for relative times and one for abs.
public: // TODO-FIXME: make dtor private
~PlatformParker() { guarantee (0, "invariant") ; }
public:
PlatformParker() { int status; status = pthread_cond_init (&_cond[REL_INDEX], os::Linux::condAttr()); assert_status(status == 0, status, "cond_init rel"); status = pthread_cond_init (&_cond[ABS_INDEX], NULL); assert_status(status == 0, status, "cond_init abs"); status = pthread_mutex_init (_mutex, NULL); assert_status(status == 0, status, "mutex_init"); _cur_index = -1; // mark as unused }
};
看到 park.cpp 中沒有重寫 park() 和 unpark() 方法,也就是說阻塞實現徹底交由特定平臺代碼處理了(os_linux.cpp):
// park方法的實現,依賴於 _counter, _mutex[1], _cond[2]
void Parker::park(bool isAbsolute, jlong time) {
// Ideally we'd do something useful while spinning, such
// as calling unpackTime().
// Optional fast-path check:
// Return immediately if a permit is available.
// We depend on Atomic::xchg() having full barrier semantics
// since we are doing a lock-free update to _counter.
if (Atomic::xchg(0, &_counter) > 0) return;
Thread* thread = Thread::current();
assert(thread->is_Java_thread(), "Must be JavaThread");
JavaThread jt = (JavaThread )thread;
// Optional optimization -- avoid state transitions if there's an interrupt pending.
// Check interrupt before trying to wait
if (Thread::is_interrupted(thread, false)) {
return;
}
// Next, demultiplex/decode time arguments
timespec absTime;
if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
return;
}
if (time > 0) {
unpackTime(&absTime, isAbsolute, time);
}
// Enter safepoint region
// Beware of deadlocks such as 6317397.
// The per-thread Parker:: mutex is a classic leaf-lock.
// In particular a thread must never block on the Threads_lock while
// holding the Parker:: mutex. If safepoints are pending both the
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
ThreadBlockInVM tbivm(jt);
// Don't wait if cannot get lock since interference arises from
// unblocking. Also. check interrupt before trying wait
if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
return;
}
int status ;
if (_counter > 0) { // no wait needed
_counter = 0; status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; // Paranoia to ensure our locked and lock-free paths interact // correctly with each other and Java-level accesses. OrderAccess::fence(); return;
}
#ifdef ASSERT
// Don't catch signals while blocked; let the running threads have the signals.
// (This allows a debugger to break into the running thread.)
sigset_t oldsigs;
sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
#endif
OSThreadWaitState osts(thread->osthread(), false / not Object.wait() /);
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
assert(_cur_index == -1, "invariant");
if (time == 0) {
_cur_index = REL_INDEX; // arbitrary choice when not timed status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
} else {
_cur_index = isAbsolute ? ABS_INDEX : REL_INDEX; status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ; if (status != 0 && WorkAroundNPTLTimedWaitHang) { pthread_cond_destroy (&_cond[_cur_index]) ; pthread_cond_init (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr()); }
}
_cur_index = -1;
assert_status(status == 0 || status == EINTR ||
status == ETIME || status == ETIMEDOUT, status, "cond_timedwait");
#ifdef ASSERT
pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
#endif
_counter = 0 ;
status = pthread_mutex_unlock(_mutex) ;
assert_status(status == 0, status, "invariant") ;
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other and Java-level accesses.
OrderAccess::fence();
// If externally suspended while waiting, re-suspend
if (jt->handle_special_suspend_equivalent_condition()) {
jt->java_suspend_self();
}
}
// unpark 實現,相對簡單些
void Parker::unpark() {
int s, status ;
status = pthread_mutex_lock(_mutex);
assert (status == 0, "invariant") ;
s = _counter;
_counter = 1;
if (s < 1) {
// thread might be parked if (_cur_index != -1) { // thread is definitely parked if (WorkAroundNPTLTimedWaitHang) { status = pthread_cond_signal (&_cond[_cur_index]); assert (status == 0, "invariant"); status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant"); } else { // must capture correct index before unlocking int index = _cur_index; status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant"); status = pthread_cond_signal (&_cond[index]); assert (status == 0, "invariant"); } } else { pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; }
} else {
pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ;
}
}
從上面代碼能夠看出,阻塞主要藉助於三個變量,_cond、_mutex、_counter, 調用 Linux 系統的 pthread_cond_wait、pthread_mutex_lock、pthread_mutex_unlock (一組 POSIX 標準的阻塞接口)等平臺相關的方法進行阻塞了!
而 park.cpp 中,則只有 Allocate、Release 等的一些常規操做!
// 6399321 As a temporary measure we copied & modified the ParkEvent::
// allocate() and release() code for use by Parkers. The Parker:: forms
// will eventually be removed as we consolide and shift over to ParkEvents
// for both builtin synchronization and JSR166 operations.
volatile int Parker::ListLock = 0 ;
Parker * volatile Parker::FreeList = NULL ;
Parker Parker::Allocate (JavaThread t) {
guarantee (t != NULL, "invariant") ;
Parker * p ;
// Start by trying to recycle an existing but unassociated
// Parker from the global free list.
// 8028280: using concurrent free list without memory management can leak
// pretty badly it turns out.
Thread::SpinAcquire(&ListLock, "ParkerFreeListAllocate");
{
p = FreeList; if (p != NULL) { FreeList = p->FreeNext; }
}
Thread::SpinRelease(&ListLock);
if (p != NULL) {
guarantee (p->AssociatedWith == NULL, "invariant") ;
} else {
// Do this the hard way -- materialize a new Parker.. p = new Parker() ;
}
p->AssociatedWith = t ; // Associate p with t
p->FreeNext = NULL ;
return p ;
}
void Parker::Release (Parker * p) {
if (p == NULL) return ;
guarantee (p->AssociatedWith != NULL, "invariant") ;
guarantee (p->FreeNext == NULL , "invariant") ;
p->AssociatedWith = NULL ;
Thread::SpinAcquire(&ListLock, "ParkerFreeListRelease");
{
p->FreeNext = FreeList; FreeList = p;
}
Thread::SpinRelease(&ListLock);
}
綜上源碼,在進行阻塞的時候,底層並無(並不必定)要用 while 死循環來阻塞,更多的是藉助於操做系統的實現來進行阻塞的。固然,這也更符合你們的猜測!
從上的代碼咱們也發現一點,底層在作許多事的時候,都不忘考慮線程中斷,也就是說,即便在阻塞狀態也是能夠接收中斷信號的,這爲上層語言打開了方便之門。
若是要細說阻塞,其實還遠沒完,不過再往操做系統層面如何實現,就得再下點功夫,去翻翻資料了,把底線壓在操做系統層面,大多數狀況下也夠用了!