說明1:本文分析基於內核源碼版本爲linux-2.6.31
說明2:本文在理解了linux中總線、設備和驅動模型的基礎上加以分析代碼node
天貓爆款 聯想 ibm ThinkPad E320 129862C 代替55C 筆記本 包郵linux
雖然Linux驅動程序應該是和具體的硬件平臺分離的,可是爲了更好的理解DM9000的驅動程序,這裏仍是結合一下Mini2440開發板,這樣也能夠更好的體會如何實現驅動和平臺分離。ios
本文分紅如下幾個部分:
1、Mini2440開發板上DM9000的電氣鏈接和Mach-mini2440.c文件的關係。
2、兩個重要的結構體介紹:sk_buff和net_device
3、具體代碼分析網絡
1、Mini2440開發板上DM9000的電氣鏈接和Mach-mini2440.c文件的關係
Mini2440開發板上DM9000與S3C2440的鏈接關係以下:ide
![](http://static.javashuo.com/static/loading.gif)
其中片選信號AEN使用了nGCS4,因此網卡的內存區域在BANK4,也就是從地址0x20000000開始。DM9000的TXD[2:0]做 爲strap pin在電路圖中是空接的,因此IO base是300H。中斷使用了EINT7。這些內容在Mach文件中有以下體現:函數
- #define S3C2410_CS4 (0x20000000)
- #define MACH_MINI2440_DM9K_BASE (S3C2410_CS4 + 0x300)
- static struct resource mini2440_dm9k_resource[] __initdata = {
- [0] = {
- .start = MACH_MINI2440_DM9K_BASE,
- .end = MACH_MINI2440_DM9K_BASE + 3,
- .flags = IORESOURCE_MEM
- },
- [1] = {
- .start = MACH_MINI2440_DM9K_BASE + 4,
- .end = MACH_MINI2440_DM9K_BASE + 7,
- .flags = IORESOURCE_MEM
- },
- [2] = {
- .start = IRQ_EINT7,
- .end = IRQ_EINT7,
- .flags = IORESOURCE_IRQ | IORESOURCE_IRQ_HIGHEDGE,
- }
- };
另外在Mach文件中還定義了DM9000平臺設備,設備名稱爲「dm9000」,設備資源就是上面定義的IO和中斷資源。代碼清單以下:oop
- static struct dm9000_plat_data mini2440_dm9k_pdata __initdata = {
- .flags = (DM9000_PLATF_16BITONLY | DM9000_PLATF_NO_EEPROM),
- };
-
- static struct platform_device mini2440_device_eth __initdata = {
- .name = "dm9000",
- .id = -1,
- .num_resources = ARRAY_SIZE(mini2440_dm9k_resource),
- .resource = mini2440_dm9k_resource,
- .dev = {
- .platform_data = &mini2440_dm9k_pdata,
- },
- };
這個DM9000平臺設備做爲衆多平臺設備中的一個在扳子初始化的時候就被添加到了總線上。代碼清單以下:this
- MACHINE_START(MINI2440, "MINI2440")
- /* Maintainer: Michel Pollet <buserror@gmail.com> */
- .phys_io = S3C2410_PA_UART,
- .io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
- .boot_params = S3C2410_SDRAM_PA + 0x100,
- .map_io = mini2440_map_io,
- .init_machine = mini2440_init, /*初始化函數*/
- .init_irq = s3c24xx_init_irq,
- .timer = &s3c24xx_timer,
- MACHINE_END
- static void __init mini2440_init(void)
- {
- ...
- ...
- platform_add_devices(mini2440_devices, ARRAY_SIZE(mini2440_devices));
-
- ...
- ...
- }
- static struct platform_device *mini2440_devices[] __initdata = {
- &s3c_device_usb,
- &s3c_device_wdt,
- /* &s3c_device_adc,*/ /* ADC doesn't like living with touchscreen ! */
- &s3c_device_i2c0,
- &s3c_device_rtc,
- &s3c_device_usbgadget,
- &mini2440_device_eth, /*dm9000是衆多平臺設備中的一個*/
- &mini2440_led1,
- &mini2440_led2,
- &mini2440_led3,
- &mini2440_led4,
- &mini2440_button_device,
- &s3c_device_nand,
- &s3c_device_sdi,
- &s3c_device_iis,
- &mini2440_audio,
- /* &s3c_device_timer[0],*/ /* buzzer pwm, no API for it */
- /* remaining devices are optional */
- };
2、兩個重要的結構體簡單介紹:sk_buff和net_devicespa
*sk_buff.net
若是把網絡傳輸當作是運送貨物的話,那麼sk_buff就是這個「貨物」了,全部經手這個貨物的人都要乾點什麼事兒,要麼加個包裝,要麼印個戳兒等等。收 貨的時候就要拆掉這些包裝,獲得咱們須要的貨物(payload data)。沒有貨物你還運輸什麼呢?因而可知sk_buff的重要性了。關於sk_buff的詳細介紹和幾個操做它的函數,參考本博客轉載的一篇文 章:「linux內核sk_buff的結構分析」,寫得很是明白了。贊一個~
*net_device
又是一個龐大的結構體。好吧,我認可我歷來就沒有看全過這個結構體。它在內核中就是指代了一個網絡設備。驅動程序須要在探測的時候分配並初始化這個結構體,而後使用register_netdev來註冊它,這樣就能夠把操做硬件的函數與內核掛接在一塊兒。
3、具體代碼的分析
在順序分析以前先看三個結構體變量和一個自定義的結構體。
* dm9000_driver變量。是platform_driver結構體變量,其中包含了重要的:驅動的名字(用來match)和幾個重要操做函數。
- static struct platform_driver dm9000_driver = {
- .driver = {
- .name = "dm9000",
- .owner = THIS_MODULE,
- },
- .probe = dm9000_probe,
- .remove = __devexit_p(dm9000_drv_remove),
- .suspend = dm9000_drv_suspend,
- .resume = dm9000_drv_resume,
- };
* dm9000_netdev_ops變量。是net_device_ops結構體變量, 其中定義了操做net_device的重要函數,咱們在驅動程序中根據須要的操做要填充這些函數。代碼清單以下:
- static const struct net_device_ops dm9000_netdev_ops = {
- .ndo_open = dm9000_open,
- .ndo_stop = dm9000_stop,
- .ndo_start_xmit = dm9000_start_xmit,
- .ndo_tx_timeout = dm9000_timeout,
- .ndo_set_multicast_list = dm9000_hash_table,
- .ndo_do_ioctl = dm9000_ioctl,
- .ndo_change_mtu = eth_change_mtu,
- .ndo_validate_addr = eth_validate_addr,
- .ndo_set_mac_address = eth_mac_addr,
- #ifdef CONFIG_NET_POLL_CONTROLLER
- .ndo_poll_controller = dm9000_poll_controller,
- #endif
- };
* dm9000_ethtool_ops變量。是ethtool_ops結構體變量,爲了支持ethtool,其中的函數主要是用於查詢和設置網卡參數(固然也有的驅動程序可能不支持ethtool)。代碼清單以下:
- static const struct ethtool_ops dm9000_ethtool_ops = {
- .get_drvinfo = dm9000_get_drvinfo,
- .get_settings = dm9000_get_settings,
- .set_settings = dm9000_set_settings,
- .get_msglevel = dm9000_get_msglevel,
- .set_msglevel = dm9000_set_msglevel,
- .nway_reset = dm9000_nway_reset,
- .get_link = dm9000_get_link,
- .get_eeprom_len = dm9000_get_eeprom_len,
- .get_eeprom = dm9000_get_eeprom,
- .set_eeprom = dm9000_set_eeprom,
- };
* board_info結構體。用來保存芯片相關的一些私有信息。具體在代碼中分析。下面是這個結構體的清單。
- /* Structure/enum declaration ------------------------------- */
- typedef struct board_info {
-
- void __iomem *io_addr; /* Register I/O base address */
- void __iomem *io_data; /* Data I/O address */
- u16 irq; /* IRQ */
-
- u16 tx_pkt_cnt;
- u16 queue_pkt_len;
- u16 queue_start_addr;
- u16 dbug_cnt;
- u8 io_mode; /* 0:word, 2:byte */
- u8 phy_addr;
- u8 imr_all;
-
- unsigned int flags;
- unsigned int in_suspend :1;
- int debug_level;
-
- enum dm9000_type type;
-
- void (*inblk)(void __iomem *port, void *data, int length);
- void (*outblk)(void __iomem *port, void *data, int length);
- void (*dumpblk)(void __iomem *port, int length);
-
- struct device *dev; /* parent device */
-
- struct resource *addr_res; /* resources found */
- struct resource *data_res;
- struct resource *addr_req; /* resources requested */
- struct resource *data_req;
- struct resource *irq_res;
-
- struct mutex addr_lock; /* phy and eeprom access lock */
-
- struct delayed_work phy_poll;
- struct net_device *ndev;
-
- spinlock_t lock;
-
- struct mii_if_info mii;
- u32 msg_enable;
- } board_info_t;
下面看一下具體代碼。
分析代碼仍是從init順序開始。
1. 註冊平臺驅動。
主要完成的任務是:將驅動添加到總線上,完成驅動和設備的match,並執行驅動的probe函數。代碼清單以下:
- static struct platform_driver dm9000_driver = {
- .driver = {
- .name = "dm9000", /*用這個名字完成驅動和設備的match*/
- .owner = THIS_MODULE,
- },
- .probe = dm9000_probe,
- .remove = __devexit_p(dm9000_drv_remove),
- .suspend = dm9000_drv_suspend,
- .resume = dm9000_drv_resume,
- };
-
- static int __init
- dm9000_init(void)
- {
- printk(KERN_INFO "%s Ethernet Driver, V%s/n", CARDNAME, DRV_VERSION);
-
- return platform_driver_register(&dm9000_driver);
- }
2. probe函數。
主要完成的任務是:探測設備得到並保存資源信息,根據這些信息申請內存和中斷,最後調用register_netdev註冊這個網絡設備。如下是代碼清單,能夠分紅幾個部分來看:
1) 首先定義了幾個局部變量:
struct dm9000_plat_data *pdata = pdev->dev.platform_data;
struct board_info *db; /* Point a board information structure */
struct net_device *ndev;
2) 初始化一個網絡設備。關鍵系統函數:alloc_etherdev()
3) 得到資源信息並將其保存在board_info變量db中。關鍵系統函數:netdev_priv(), platform_get_resource()
4) 根據資源信息分配內存,申請中斷等等, 並將申請後的資源信息也保存到db中,而且填充ndev中的參數。 關鍵系統函數:request_mem_region(), ioremap()。 自定義函數:dm9000_set_io()
5) 完成了第4步之後,回顧一下db和ndev中都有了什麼:
struct board_info *db:
addr_res -- 地址資源
data_res -- 數據資源
irq_res -- 中斷資源
addr_req -- 分配的地址內存資源
io_addr -- 寄存器I/O基地址
data_req -- 分配的數據內存資源
io_data -- 數據I/O基地址
dumpblk -- IO模式
outblk -- IO模式
inblk -- IO模式
lock -- 自旋鎖(已經被初始化)
addr_lock -- 互斥鎖(已經被初始化)
struct net_device *ndev:
base_addr -- 設備IO地址
irq -- 設備IRQ號
6) 設備復位。硬件操做函數dm9000_reset()
7) 讀一下生產商和製造商的ID,應該是0x9000 0A46。 關鍵函數:ior()
8) 讀一下芯片類型。
========以上步驟結束後咱們能夠認爲已經找到了DM9000========
9) 藉助ether_setup()函數來部分初始化ndev。由於對以太網設備來說,不少操做與屬性是固定的,內核能夠幫助完成。
10) 手動初始化ndev的ops和db的mii部分。
11) (若是有的話)從EEPROM中讀取節點地址。這裏能夠看到mini2440這個板子上沒有爲DM9000外掛EEPROM,因此讀取出來的所有是 0xff。見函數dm9000_read_eeprom。 關於外掛EEPROM,能夠參考datasheet上的7.EEPROM Format一節。
12) 很顯然ndev是咱們在probe函數中定義的局部變量,若是我想在其餘地方使用它怎麼辦呢? 這就須要把它保存起來。內核提供了這個方法,使用函數platform_set_drvdata()能夠將ndev保存成平臺總線設備的私有數據。之後再 要使用它時只需調用platform_get_drvdata()就能夠了。
13) 使用register_netdev()註冊ndev。
下面是代碼清單:
- static int __devinit
- dm9000_probe(struct platform_device *pdev)
- {
- struct dm9000_plat_data *pdata = pdev->dev.platform_data;
- struct board_info *db; /* Point a board information structure */
- struct net_device *ndev;
- const unsigned char *mac_src;
- int ret = 0;
- int iosize;
- int i;
- u32 id_val;
-
- /* Init network device */
- /*使用alloc_etherdev()來生成一個net_device結構體,並對其公有成員賦值*/
- ndev = alloc_etherdev(sizeof(struct board_info));
- if (!ndev) {
- dev_err(&pdev->dev, "could not allocate device./n");
- return -ENOMEM;
- }
-
- SET_NETDEV_DEV(ndev, &pdev->dev);
-
- dev_dbg(&pdev->dev, "dm9000_probe()/n");
-
- /* setup board info structure */
- db = netdev_priv(ndev);
- memset(db, 0, sizeof(*db));
-
- db->dev = &pdev->dev;
- db->ndev = ndev;
-
- spin_lock_init(&db->lock);
- mutex_init(&db->addr_lock);
-
- INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
-
- db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
- db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
-
- if (db->addr_res == NULL || db->data_res == NULL ||
- db->irq_res == NULL) {
- dev_err(db->dev, "insufficient resources/n");
- ret = -ENOENT;
- goto out;
- }
-
- iosize = res_size(db->addr_res);
- db->addr_req = request_mem_region(db->addr_res->start, iosize,
- pdev->name);
-
- if (db->addr_req == NULL) {
- dev_err(db->dev, "cannot claim address reg area/n");
- ret = -EIO;
- goto out;
- }
-
- db->io_addr = ioremap(db->addr_res->start, iosize);
-
- if (db->io_addr == NULL) {
- dev_err(db->dev, "failed to ioremap address reg/n");
- ret = -EINVAL;
- goto out;
- }
-
- iosize = res_size(db->data_res);
- db->data_req = request_mem_region(db->data_res->start, iosize,
- pdev->name);
-
- if (db->data_req == NULL) {
- dev_err(db->dev, "cannot claim data reg area/n");
- ret = -EIO;
- goto out;
- }
-
- db->io_data = ioremap(db->data_res->start, iosize);
-
- if (db->io_data == NULL) {
- dev_err(db->dev, "failed to ioremap data reg/n");
- ret = -EINVAL;
- goto out;
- }
-
- /* fill in parameters for net-dev structure */
- ndev->base_addr = (unsigned long)db->io_addr;
- ndev->irq = db->irq_res->start;
-
- /* ensure at least we have a default set of IO routines */
- dm9000_set_io(db, iosize);
-
- /* check to see if anything is being over-ridden */
- if (pdata != NULL) {
- /* check to see if the driver wants to over-ride the
- * default IO width */
-
- if (pdata->flags & DM9000_PLATF_8BITONLY)
- dm9000_set_io(db, 1);
-
- if (pdata->flags & DM9000_PLATF_16BITONLY)
- dm9000_set_io(db, 2);
-
- if (pdata->flags & DM9000_PLATF_32BITONLY)
- dm9000_set_io(db, 4);
-
- /* check to see if there are any IO routine
- * over-rides */
-
- if (pdata->inblk != NULL)
- db->inblk = pdata->inblk;
-
- if (pdata->outblk != NULL)
- db->outblk = pdata->outblk;
-
- if (pdata->dumpblk != NULL)
- db->dumpblk = pdata->dumpblk;
-
- db->flags = pdata->flags;
- }
-
- #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
- db->flags |= DM9000_PLATF_SIMPLE_PHY;
- #endif
-
- dm9000_reset(db);
-
- /* try multiple times, DM9000 sometimes gets the read wrong */
- for (i = 0; i < 8; i++) {
- id_val = ior(db, DM9000_VIDL);
- id_val |= (u32)ior(db, DM9000_VIDH) << 8;
- id_val |= (u32)ior(db, DM9000_PIDL) << 16;
- id_val |= (u32)ior(db, DM9000_PIDH) << 24;
-
- if (id_val == DM9000_ID)
- break;
- dev_err(db->dev, "read wrong id 0x%08x/n", id_val);
- }
-
- if (id_val != DM9000_ID) {
- dev_err(db->dev, "wrong id: 0x%08x/n", id_val);
- ret = -ENODEV;
- goto out;
- }
-
- /* Identify what type of DM9000 we are working on */
-
- id_val = ior(db, DM9000_CHIPR);
- dev_dbg(db->dev, "dm9000 revision 0x%02x/n", id_val);
-
- switch (id_val) {
- case CHIPR_DM9000A:
- db->type = TYPE_DM9000A;
- break;
- case CHIPR_DM9000B:
- db->type = TYPE_DM9000B;
- break;
- default:
- dev_dbg(db->dev, "ID %02x => defaulting to DM9000E/n", id_val);
- db->type = TYPE_DM9000E;
- }
-
- /* from this point we assume that we have found a DM9000 */
-
- /* driver system function */
- ether_setup(ndev);
-
- ndev->netdev_ops = &dm9000_netdev_ops;
- ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
- ndev->ethtool_ops = &dm9000_ethtool_ops;
-
- db->msg_enable = NETIF_MSG_LINK;
- db->mii.phy_id_mask = 0x1f;
- db->mii.reg_num_mask = 0x1f;
- db->mii.force_media = 0;
- db->mii.full_duplex = 0;
- db->mii.dev = ndev;
- db->mii.mdio_read = dm9000_phy_read;
- db->mii.mdio_write = dm9000_phy_write;
-
- mac_src = "eeprom";
-
- /* try reading the node address from the attached EEPROM */
- for (i = 0; i < 6; i += 2)
- dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
-
- if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
- mac_src = "platform data";
- memcpy(ndev->dev_addr, pdata->dev_addr, 6);
- }
-
- if (!is_valid_ether_addr(ndev->dev_addr)) {
- /* try reading from mac */
-
- mac_src = "chip";
- for (i = 0; i < 6; i++)
- ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
- }
-
- if (!is_valid_ether_addr(ndev->dev_addr))
- dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
- "set using ifconfig/n", ndev->name);
-
- platform_set_drvdata(pdev, ndev);
- ret = register_netdev(ndev);
-
- if (ret == 0)
- printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)/n",
- ndev->name, dm9000_type_to_char(db->type),
- db->io_addr, db->io_data, ndev->irq,
- ndev->dev_addr, mac_src);
- return 0;
-
- out:
- dev_err(db->dev, "not found (%d)./n", ret);
-
- dm9000_release_board(pdev, db);
- free_netdev(ndev);
-
- return ret;
- }
3. platform_driver的remove, suspend和resume的實現
remove函數的功能是把設備從內核中移除,釋放內存區域。該函數在卸載模塊時被調用。代碼清單以下:
- static int __devexit
- dm9000_drv_remove(struct platform_device *pdev)
- {
- struct net_device *ndev = platform_get_drvdata(pdev);
-
- platform_set_drvdata(pdev, NULL);
-
- unregister_netdev(ndev);
- dm9000_release_board(pdev, (board_info_t *) netdev_priv(ndev));
- free_netdev(ndev); /* free device structure */
-
- dev_dbg(&pdev->dev, "released and freed device/n");
- return 0;
- }
suspend函數並不真正把設備從內核中移除,而只是標誌設備爲removed狀態,並設置掛起標誌位,最後關閉設備。代碼清單以下:
- static int
- dm9000_drv_suspend(struct platform_device *dev, pm_message_t state)
- {
- struct net_device *ndev = platform_get_drvdata(dev);
- board_info_t *db;
-
- if (ndev) {
- db = netdev_priv(ndev);
- db->in_suspend = 1;
-
- if (netif_running(ndev)) {
- netif_device_detach(ndev);
- dm9000_shutdown(ndev);
- }
- }
- return 0;
- }
resume函數將掛起的設備復位並初始化,軟後將設備標誌爲attached狀態,並設置掛起標誌位。代碼清單以下:
- static int
- dm9000_drv_resume(struct platform_device *dev)
- {
- struct net_device *ndev = platform_get_drvdata(dev);
- board_info_t *db = netdev_priv(ndev);
-
- if (ndev) {
-
- if (netif_running(ndev)) {
- dm9000_reset(db);
- dm9000_init_dm9000(ndev);
-
- netif_device_attach(ndev);
- }
-
- db->in_suspend = 0;
- }
- return 0;
- }
4. 下面看一下用於填充net_device中netdev_ops和ethtool_ops的一些函數。
代碼在上面已經寫出來了,爲了看着方便在下面再寫一遍,能夠看 出雖然mini2440的板子上沒有爲DM9000掛EEPROM,但這裏仍是定義了操做EEPROM的函數。就是說寫驅動的時候是不考慮具體的板子的, 你板子用不用是你的事,可是咱們的驅動應該全部的功能都考慮進去。這也體現了驅動和平臺分離的設計思想。
- static const struct net_device_ops dm9000_netdev_ops = {
- .ndo_open = dm9000_open,
- .ndo_stop = dm9000_stop,
- .ndo_start_xmit = dm9000_start_xmit,
- .ndo_tx_timeout = dm9000_timeout,
- .ndo_set_multicast_list = dm9000_hash_table,
- .ndo_do_ioctl = dm9000_ioctl,
- .ndo_change_mtu = eth_change_mtu,
- .ndo_validate_addr = eth_validate_addr,
- .ndo_set_mac_address = eth_mac_addr,
- #ifdef CONFIG_NET_POLL_CONTROLLER
- .ndo_poll_controller = dm9000_poll_controller,
- #endif
- };
- static const struct ethtool_ops dm9000_ethtool_ops = {
- .get_drvinfo = dm9000_get_drvinfo,
- .get_settings = dm9000_get_settings,
- .set_settings = dm9000_set_settings,
- .get_msglevel = dm9000_get_msglevel,
- .set_msglevel = dm9000_set_msglevel,
- .nway_reset = dm9000_nway_reset,
- .get_link = dm9000_get_link,
- .get_eeprom_len = dm9000_get_eeprom_len,
- .get_eeprom = dm9000_get_eeprom,
- .set_eeprom = dm9000_set_eeprom,
- };
*dm9000_open()
進行的工做有 向內核註冊中斷,復位並初始化dm9000,檢查MII接口,使能傳輸等。代碼清單以下:
- /*
- * Open the interface.
- * The interface is opened whenever "ifconfig" actives it.
- */
- static int
- dm9000_open(struct net_device *dev)
- {
- board_info_t *db = netdev_priv(dev);
- unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
-
- if (netif_msg_ifup(db))
- dev_dbg(db->dev, "enabling %s/n", dev->name);
-
- /* If there is no IRQ type specified, default to something that
- * may work, and tell the user that this is a problem */
-
- if (irqflags == IRQF_TRIGGER_NONE)
- dev_warn(db->dev, "WARNING: no IRQ resource flags set./n");
-
- irqflags |= IRQF_SHARED;
-
- if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))/*註冊一箇中斷,中斷處理函數爲dm9000_interrupt()*/
- return -EAGAIN;
-
- /* Initialize DM9000 board */
- dm9000_reset(db);
- dm9000_init_dm9000(dev);
-
- /* Init driver variable */
- db->dbug_cnt = 0;
-
- mii_check_media(&db->mii, netif_msg_link(db), 1);
- netif_start_queue(dev);
-
- dm9000_schedule_poll(db);/*以前在probe函數中已經使用INIT_DELAYED_WORK來初始化一個延遲工做隊列並關聯了一個操做函數dm9000_poll_work(), 此時運行schedule來調用這個函數*/
-
- return 0;
- }
*dm9000_stop()
作的工做基本上和open相反。代碼清單以下:
- /*
- * Stop the interface.
- * The interface is stopped when it is brought.
- */
- static int
- dm9000_stop(struct net_device *ndev)
- {
- board_info_t *db = netdev_priv(ndev);
-
- if (netif_msg_ifdown(db))
- dev_dbg(db->dev, "shutting down %s/n", ndev->name);
-
- cancel_delayed_work_sync(&db->phy_poll); /*殺死延遲工做隊列phy_poll*/
-
- /*中止傳輸並清空carrier*/
- netif_stop_queue(ndev);
- netif_carrier_off(ndev);
-
- /* free interrupt */
- free_irq(ndev->irq, ndev);
-
- dm9000_shutdown(ndev);
-
- return 0;
- }
*dm9000_start_xmit()
重要的發送數據包函數。從上層發送sk_buff包。在看代碼以前先來看一下DM9000是如何發送數據包的。
![](http://static.javashuo.com/static/loading.gif)
如上圖所示,在DM9000內部SRAM中,地址0x0000~0x0BFF是TX Buffer, 地址0x0C00~0x3FFF是RX Buffer。在發送一個包以前,包中的有效數據必須先被存儲到TX Buffer中而且使用輸出端口命令來選擇MWCMD寄存器。包的長度定義在TXPLL和TXPLH中。最後設置TXCR寄存器的bit[0] TXREQ來自動發送包。若是設置了IMR寄存器的PTM位,則DM9000會產生一箇中斷觸發在ISR寄存器的bit[1]=PTS=1, 同時設置一個完成標誌在NSR寄存器的bit[2]=TX1END或者 bit[3]=TX2END,表示包已經發送完了。發送一個包的具體步驟以下:
Step 1: 檢查存儲數據寬度。經過讀取中斷狀態寄存器(ISR)的bit[7:6]來肯定是8bit,16bit仍是32bit。
Step 2: 寫數據到TX SRAM中。
Step 3: 寫傳輸長度到TXPLL和TXPLH寄存器中。
Step 4: 設置TXCR寄存器的bit[0]TXREQ來開始發送一個包。
代碼清單以下,讓咱們看看在得到自旋鎖這段期間都幹了些什麼:
- /*
- * Hardware start transmission.
- * Send a packet to media from the upper layer.
- */
- static int
- dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
- {
- unsigned long flags;
- board_info_t *db = netdev_priv(dev);
-
- dm9000_dbg(db, 3, "%s:/n", __func__);
-
- if (db->tx_pkt_cnt > 1)
- return NETDEV_TX_BUSY;
-
- /*得到自旋鎖*/
- spin_lock_irqsave(&db->lock, flags);
-
- /* Move data to DM9000 TX RAM */
- /*下面四行代碼將skb中的data部分寫入DM9000的TX RAM,並更新已發送字節數和發送計數*/
- writeb(DM9000_MWCMD, db->io_addr);
-
- (db->outblk)(db->io_data, skb->data, skb->len);
- dev->stats.tx_bytes += skb->len;
-
- db->tx_pkt_cnt++;
- /* TX control: First packet immediately send, second packet queue */
- /*若是發送的是第一個包,則設置一下包的長度後直接發送*/
- /*若是發的不是第一個包,*/
- if (db->tx_pkt_cnt == 1) {
- /* Set TX length to DM9000 */
- iow(db, DM9000_TXPLL, skb->len);
- iow(db, DM9000_TXPLH, skb->len >> 8);
-
- /* Issue TX polling command */
- iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
-
- dev->trans_start = jiffies; /* save the time stamp */
- } else {
- /* Second packet */
- /* 若是發送的是第二個數據包(代表隊列中此時有包發送),則將其加入隊列中:將skb->len和skb->ip_summed(控制校驗操 做)賦值給board_info_t中有關隊列的相關成員。調用函數netif_stop_queue(dev),通知內核如今queue已滿,不能再將 發送數據傳到隊列中,注:第二個包的發送將在tx_done中實現。*/
- db->queue_pkt_len = skb->len;
- netif_stop_queue(dev);
- }
-
- /*釋放自旋鎖*/
- spin_unlock_irqrestore(&db->lock, flags);
-
- /* free this SKB */
- dev_kfree_skb(skb);
-
- return 0;
- }
*dm9000_timeout()
當watchdog超時時調用該函數。主要的功能是保存寄存器地址,中止隊列,重啓並初始化DM9000,喚醒隊列,恢復寄存器地址。
代碼清單以下:
- /* Our watchdog timed out. Called by the networking layer */
- static void dm9000_timeout(struct net_device *dev)
- {
- board_info_t *db = netdev_priv(dev);
- u8 reg_save;
- unsigned long flags;
-
- /* Save previous register address */
- reg_save = readb(db->io_addr);
- spin_lock_irqsave(&db->lock, flags);
-
- netif_stop_queue(dev);
- dm9000_reset(db);
- dm9000_init_dm9000(dev);
- /* We can accept TX packets again */
- dev->trans_start = jiffies;
- netif_wake_queue(dev);
-
- /* Restore previous register address */
- writeb(reg_save, db->io_addr);
- spin_unlock_irqrestore(&db->lock, flags);
- }
*dm9000_hash_table()
該函數用來設置DM9000的組播地址。代碼清單以下:
- /*
- * Set DM9000 multicast address
- */
- static void
- dm9000_hash_table(struct net_device *dev)
- {
- board_info_t *db = netdev_priv(dev);
- struct dev_mc_list *mcptr = dev->mc_list;
- int mc_cnt = dev->mc_count;
- int i, oft;
- u32 hash_val;
- u16 hash_table[4];
- u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
- unsigned long flags;
-
- dm9000_dbg(db, 1, "entering %s/n", __func__);
-
- spin_lock_irqsave(&db->lock, flags);
-
- for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
- iow(db, oft, dev->dev_addr[i]);
-
- /* Clear Hash Table */
- for (i = 0; i < 4; i++)
- hash_table[i] = 0x0;
-
- /* broadcast address */
- hash_table[3] = 0x8000;
-
- if (dev->flags & IFF_PROMISC)
- rcr |= RCR_PRMSC;
-
- if (dev->flags & IFF_ALLMULTI)
- rcr |= RCR_ALL;
-
- /* the multicast address in Hash Table : 64 bits */
- for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
- hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
- hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
- }
-
- /* Write the hash table to MAC MD table */
- for (i = 0, oft = DM9000_MAR; i < 4; i++) {
- iow(db, oft++, hash_table[i]);
- iow(db, oft++, hash_table[i] >> 8);
- }
-
- iow(db, DM9000_RCR, rcr);
- spin_unlock_irqrestore(&db->lock, flags);
- }
*dm9000_ioctl()
從源碼能夠看出,dm9000的ioctl其實是使用了mii的ioctl。代碼清單以下:
- static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
- {
- board_info_t *dm = to_dm9000_board(dev);
-
- if (!netif_running(dev))
- return -EINVAL;
-
- return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
- }
*dm9000_poll_controller()
當內核配置Netconsole時該函數生效。代碼清單以下:
- #ifdef CONFIG_NET_POLL_CONTROLLER
- /*
- *Used by netconsole
- */
- static void dm9000_poll_controller(struct net_device *dev)
- {
- disable_irq(dev->irq);
- dm9000_interrupt(dev->irq, dev);
- enable_irq(dev->irq);
- }
- #endif
*dm9000_get_drvinfo()
該函數去的設備的基本信息(設備名,版本,總線名)傳給ethtool_drvinfo結構體變量。代碼清單以下:
- static void dm9000_get_drvinfo(struct net_device *dev,
- struct ethtool_drvinfo *info)
- {
- board_info_t *dm = to_dm9000_board(dev); /*to_dm9000_board實際上就是調用了netdev_priv(dev)*/
-
- strcpy(info->driver, CARDNAME);
- strcpy(info->version, DRV_VERSION);
- strcpy(info->bus_info, to_platform_device(dm->dev)->name);
- }
*dm9000_get_settings()
該函數獲得由參數cmd指定的設置信息。
*dm9000_set_settings()
該函數設置由參數cmd指定的信息。
*dm9000_get_msglevel()
*dm9000_set_msglevel()
這兩個函數設置和取得message level,實際是設置和取得board_info中的msg_enable信息。
*dm9000_nway_reset()
重啓mii的自動協商
*dm9000_get_link()
該函數的到link狀態。若是帶外部PHY,則返回mii連接狀態。 不然返回DM9000 NSR寄存器數值。
*dm9000_get_eeprom_len()
dm9000_get_eeprom()
dm9000_set_eeprom()
這三個函數用來讀寫eeprom。
5. 與數據傳輸有關的函數。
上面已經分析了一個與數據傳輸有關的函數,那就是發送數據的函數dm9000_start_xmit()。這裏再來分析數據的接收。再看具體代碼以前仍是來看看DM9000的數據接收的過程。
接收的數據存儲在RX SRAM中,地址是0C00h~3FFFh。存儲在RX_SRAM中的每一個包都有4個字節的信息頭。可使用MRCMDX和MRCMD寄存器來獲得這些信 息。第一個字節用來檢查數據包是否接收到了RX_SRAM中,若是這個字節是"01",意味着一個包已經接收。若是是"00",則尚未數據包被接收到 RX_SRAM中。第二個字節保存接收到的數據包的信息,格式和RSR寄存器同樣。根據這個格式,接收到的包能被校驗是正確的仍是錯誤的包。第三和第四字 節保存了接收的數據包的長度。這四個字節之外的其餘字節就是接收包的數據。看下圖能夠更好的理解這種格式。
![](http://static.javashuo.com/static/loading.gif)
根據包的結構能夠知道接收一個包應該按照下面的步驟來進行:
第一步:判斷包是否已經接收過來了。須要用到MRCMDX寄存器。MRCMDX寄存器是存儲數據讀命令寄存器(地址不增長)。 這個寄存器只是用來讀接收包標誌位"01"。下面這段代碼是一個例子,用來判斷RX ready:
- u8 RX_ready = ior( IOaddr, 0xF0 ); /* dummy read the packet ready flag */
- RX_ready = (u8) inp( IOaddr + 4 ); /* got the most updated data */
- if ( RX_ready == 1 ) { /* ready check: this byte must be 0 or 1 */
- /* check the RX status and to get RX length (see datasheet ch.5.6.3) */
- /* income RX a packet (see datasheet ch.5.6.4) */
- } else if ( RX_ready != 0 ) { /* stop device and wait to reset device */
- iow( IOaddr, 0xFF, 0x80 ); /* stop INT request */
- iow( IOaddr, 0xFE, 0x0F ); /* clear ISR status */
- iow( IOaddr, 0x05, 0x00 ); /* stop RX function */
- u8 device_wait_reset = TRUE; /* raise the reset flag */
- }
第二步:檢查包的狀態和長度。須要用到MRCMD寄存器(存儲數據讀命令,讀指針自動增長)。下面這段例子代碼用來讀RX狀態和長度。
- u8 io_mode = ior( IOaddr, 0xFE ) >> 6; /* ISR bit[7:6] keep I/O mode */
- outp( IOaddr, 0xF2 ); /* trigger MRCMD reg_F2h with read_ptr++ */
- /* int RX_status : the RX packet status, int RX_length : the RX packet length */
- if ( io_mode == 2 ) { /* I/O byte mode */
- RX_status = inp( IOaddr + 4 ) + ( inp( IOaddr + 4 ) << 8 );
- RX_length = inp( IOaddr + 4 ) + ( inp( IOaddr + 4 ) << 8 ); }
- else if ( io_mode == 0 ) { /* I/O word mode */
- RX_status = inpw( IOaddr + 4 );
- RX_length = inpw( IOaddr + 4 ); }
- else if ( io_mode == 1 ) { /* I/O dword mode */
- (u32) status_tmp = inpl( IOaddr + 4 ); /* got the RX 32-bit dword data */
- RX_status = (u16)( status_tmp & 0xFFFF );
- RX_length = (u16)( ( status_tmp >> 16 ) & 0xFFFF ); }
第三步:讀包的數據。也須要MRCMD寄存器。例子代碼以下:
- /* u8 RX_data[] : the data of the received packet */
- if ( io_mode == 2 ) { /* I/O byte mode */
- for ( i = 0 ; i < RX_length ; i++ ) /* loop to read a byte data from RX SRAM */
- RX_data[ i ] = (u8) inp( IOaddr + 4 ); }
- else if ( io_mode == 0 ) { /* I/O word mode */
- int length_tmp = ( RX_length + 1 ) / 2;
- for ( i = 0 ; i < length_tmp ; i++ ) /* loop to read a word data from RX SRAM */
- ( (u16 *)RX_data)[ i ] = inpw( IOaddr + 4 ); }
- else if ( io_mode == 1 ) { /* I/O dword mode */
- int length_tmp = ( RX_length + 3 ) / 4;
- for ( i = 0 ; i < length_tmp ; i++ ) /* loop to read a dword data from RX SRAM */
- ( (u32 *)RX_data)[ i ] = inpl( IOaddr + 4 ); } /* inpl() is inport 32-bit I/O */
下面的dm9000_rx()函數其實是按照上面這三個步驟來實現的,具體實現並不必定是要參照例子代碼。 注意這裏按照DM9000接收包的格式定義了一個結構體dm9000_rxhdr用來表示頭部的四個字節。代碼清單以下:
- struct dm9000_rxhdr {
- u8 RxPktReady;
- u8 RxStatus;
- __le16 RxLen;
- } __attribute__((__packed__));
接收函數代碼以下:
- /*
- * Received a packet and pass to upper layer
- */
- static void
- dm9000_rx(struct net_device *dev)
- {
- board_info_t *db = netdev_priv(dev);
- struct dm9000_rxhdr rxhdr;
- struct sk_buff *skb;
- u8 rxbyte, *rdptr;
- bool GoodPacket;
- int RxLen;
-
- /* Check packet ready or not */
- do {
- ior(db, DM9000_MRCMDX); /* Dummy read */
-
- /* Get most updated data */
- /*讀一下最新數據的第一個字節*/
- rxbyte = readb(db->io_data);
-
- /* Status check: this byte must be 0 or 1 */
- /*DM9000_PKT_RDY定義是0x01,若是第一個字節大於0x01,則不是正確的狀態。由於第一個字節只能是01h或00h*/
- if (rxbyte > DM9000_PKT_RDY) {
- dev_warn(db->dev, "status check fail: %d/n", rxbyte);
- iow(db, DM9000_RCR, 0x00); /* Stop Device */
- iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
- return;
- }
-
- if (rxbyte != DM9000_PKT_RDY)
- return;
-
- /* A packet ready now & Get status/length */
- GoodPacket = true;
- writeb(DM9000_MRCMD, db->io_addr);
-
- (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));/*一次性讀入四個字節的內容到rxhdr變量*/
-
- RxLen = le16_to_cpu(rxhdr.RxLen);
-
- if (netif_msg_rx_status(db))
- dev_dbg(db->dev, "RX: status %02x, length %04x/n",
- rxhdr.RxStatus, RxLen);
-
- /* Packet Status check */
- if (RxLen < 0x40) {
- GoodPacket = false;
- if (netif_msg_rx_err(db))
- dev_dbg(db->dev, "RX: Bad Packet (runt)/n");
- }
-
- if (RxLen > DM9000_PKT_MAX) {
- dev_dbg(db->dev, "RST: RX Len:%x/n", RxLen);
- }
-
- /* rxhdr.RxStatus is identical to RSR register. */
- if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
- RSR_PLE | RSR_RWTO |
- RSR_LCS | RSR_RF)) {
- GoodPacket = false;
- if (rxhdr.RxStatus & RSR_FOE) {
- if (netif_msg_rx_err(db))
- dev_dbg(db->dev, "fifo error/n");
- dev->stats.rx_fifo_errors++;
- }
- if (rxhdr.RxStatus & RSR_CE) {
- if (netif_msg_rx_err(db))
- dev_dbg(db->dev, "crc error/n");
- dev->stats.rx_crc_errors++;
- }
- if (rxhdr.RxStatus & RSR_RF) {
- if (netif_msg_rx_err(db))
- dev_dbg(db->dev, "length error/n");
- dev->stats.rx_length_errors++;
- }
- }
-
- /* Move data from DM9000 */
- /*關鍵的代碼就是這裏啦。使用到了上面提到的sk_buff。將RX SRAM中的data段數據放入sk_buff,而後發送給上層,至於怎麼發送,不用去驅動操心了。sk_buff的protocol所有搞定*/
- if (GoodPacket
- && ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
- skb_reserve(skb, 2);
- rdptr = (u8 *) skb_put(skb, RxLen - 4);
-
- /* Read received packet from RX SRAM */
-
- (db->inblk)(db->io_data, rdptr, RxLen);
- dev->stats.rx_bytes += RxLen;
-
- /* Pass to upper layer */
- skb->protocol = eth_type_trans(skb, dev);
- netif_rx(skb);
- dev->stats.rx_packets++;
-
- } else {
- /* need to dump the packet's data */
-
- (db->dumpblk)(db->io_data, RxLen);
- }
- } while (rxbyte == DM9000_PKT_RDY);
- }
6. 中斷處理相關函數
DM9000的驅動程序採用了中斷方式而非輪詢方式。觸發中斷的時機發生在:1)DM9000接收到一個包之後。2)DM9000發送完了一個包之後。
中斷處理函數在open的時候被註冊進內核。代碼清單以下:
- static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
- {
- struct net_device *dev = dev_id;
- board_info_t *db = netdev_priv(dev);
- int int_status;
- unsigned long flags;
- u8 reg_save;
-
- dm9000_dbg(db, 3, "entering %s/n", __func__);
-
- /* A real interrupt coming */
-
- /* holders of db->lock must always block IRQs */
- spin_lock_irqsave(&db->lock, flags);
-
- /* Save previous register address */
- reg_save = readb(db->io_addr);
-
- /* Disable all interrupts */
- iow(db, DM9000_IMR, IMR_PAR);
-
- /* Got DM9000 interrupt status */
- int_status = ior(db, DM9000_ISR); /* Got ISR */
- iow(db, DM9000_ISR, int_status); /* Clear ISR status */
-
- if (netif_msg_intr(db))
- dev_dbg(db->dev, "interrupt status %02x/n", int_status);
-
- /* Received the coming packet */
- /*若是是因爲收到數據而觸發的中斷,顯然調用dm9000_rx()把數據取走,傳遞給上層*/
- if (int_status & ISR_PRS)
- dm9000_rx(dev);
-
- /* Trnasmit Interrupt check */
- /*若是是因爲發送完了數據而觸發的中斷,則調用dm9000_tx_done()函數,下面具體分析這個函數*/
- if (int_status & ISR_PTS)
- dm9000_tx_done(dev, db);
-
- if (db->type != TYPE_DM9000E) {
- if (int_status & ISR_LNKCHNG) {
- /* fire a link-change request */
- schedule_delayed_work(&db->phy_poll, 1);
- }
- }
-
- /* Re-enable interrupt mask */
- iow(db, DM9000_IMR, db->imr_all);
-
- /* Restore previous register address */
- writeb(reg_save, db->io_addr);
-
- spin_unlock_irqrestore(&db->lock, flags);
-
- return IRQ_HANDLED;
- }
*dm9000_tx_done()
注:dm9000能夠發送兩個數據包,當發送一個數據包產生中斷後,要確認一下隊列中有沒有第2個包須要發送。
(1)讀取dm9000寄存器NSR(Network Status Register)獲取發送的狀態,存在變量tx_status中;
(2)若是發送狀態爲NSR_TX2END(第2個包發送完畢)或者NSR_TX1END(第1個包發送完畢),則將待發送的數據包數量(db-> tx_pkt_cnt )減1,已發送的數據包數量(dev->stats.tx_packets)加1;
(3)檢查變量db-> tx_pkt_cnt(待發送的數據包)是否大於0(代表還有數據包要發送),則調用函數dm9000_send_packet發送隊列中的數據包;
(4)調用函數netif_wake_queue (dev)通知內核能夠將待發送的數據包進入發送隊列。
- /*
- * DM9000 interrupt handler
- * receive the packet to upper layer, free the transmitted packet
- */
-
- static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
- {
- int tx_status = ior(db, DM9000_NSR); /* Got TX status */
-
- if (tx_status & (NSR_TX2END | NSR_TX1END)) {
- /* One packet sent complete */
- db->tx_pkt_cnt--;
- dev->stats.tx_packets++;
-
- if (netif_msg_tx_done(db))
- dev_dbg(db->dev, "tx done, NSR %02x/n", tx_status);
-
- /* Queue packet check & send */
- if (db->tx_pkt_cnt > 0) {
- iow(db, DM9000_TXPLL, db->queue_pkt_len);
- iow(db, DM9000_TXPLH, db->queue_pkt_len >> 8);
- iow(db, DM9000_TCR, TCR_TXREQ);
- dev->trans_start = jiffies;
- }
- netif_wake_queue(dev);
- }
- }
7. 一些操做硬件細節的函數。
在看函數以前仍是先來看一下DM9000 CMD Pin 和Processor並行總線的鏈接關係。CMD管腳用來設置命令類型。當CMD管腳拉高時,這個命令週期訪問DATA_PORT。 若是拉低, 則這個命令週期訪問ADDR_PORT。見下圖:
![](http://static.javashuo.com/static/loading.gif)
固然,內存映射的I/O空間讀寫仍是採用最基本的readb(), readw(), readl(), writeb(), writew(), writel() , readsb(), readsw(), readsl(), writesb(), writesw(), writesl() 。
在DM9000的驅動中還自定義了幾個函數,方便操做。
* ior()
從IO端口讀一個字節。代碼清單以下:
- static u8
- ior(board_info_t * db, int reg)
- {
- writeb(reg, db->io_addr); /*寫reg到ADDR_PORT,用來選擇寄存器*/
- return readb(db->io_data); /*從DATA_PORT讀一個字節,用來讀寄存器*/
- }
* iow()
向IO端口寫一個字節。代碼清單以下:
- /*
- * Write a byte to I/O port
- */
-
- static void
- iow(board_info_t * db, int reg, int value)
- {
- writeb(reg, db->io_addr);
- writeb(value, db->io_data);
- }
此外還有dm9000_outblk_8bit(), dm9000_outblk_16bit(), dm9000_outblk_32bit(), dm9000_inblk_8bit(), dm9000_inblk_16bit(), dm9000_inblk_32bit()等等。不一一解釋。