# 這裏坑了我很久,對於python的語法掌握的仍是不行,如果使用以前那樣的`[AvgMeter()]*256`的書寫 # 獲得的是256個相同地址的類,實際上就是同一個類,每次修改都會互相影響,會致使最終的結果錯誤 pres = [AvgMeter() for _ in range(256)] recs = [AvgMeter() for _ in range(256)]
深度學習訓練的時候有不少技巧, 可是實際用起來效果如何, 仍是得親自嘗試.html
這裏記錄了一些我的嘗試不一樣技巧的代碼.python
提及tensorflow, 我就一陣頭大, google強力的創造了一門新的語言! 自從上手Pytorch後, 就不再想回去了. 可是tensorflow的生態不是通常的好, 配套設施齊全, 尤爲是可視化神器tensorboard, 到了Pytorch這邊, 幸虧還有visdom和tensorboardX, 可是前者實在是有些捉摸不透... 到時tensorboardX讓我感受更爲親切些...git
tensorboard的使用, 須要連帶tensorflow一塊兒裝好, 也就是說, 想要用pytorch的tensorboardX, 你仍是得裝好tensorflow...github
使用from tensorboardX import SummaryWriter
導入核心類(彷佛這個包裏只有這個類), 具體的用法也很簡單, 詳見https://github.com/lanpa/tensorboardX/tree/master/examples, 以及 https://tensorboardx.readthedocs.io/en/latest/index.html.數組
我這裏直接對其實例化, self.tb = SummaryWriter(self.path['tb'])
, 後面直接調用self.tb
的方法就能夠了. 在這裏, 我顯示了不少東西. 這裏須要說的有兩點:網絡
'data/train_loss_avg'
與'data/train_loss_avg'
make_grid
來獲得能夠用tensorboard顯示的圖像.if self.args['tb_update'] > 0 and curr_iter % self.args['tb_update'] == 0: self.tb.add_scalar('data/train_loss_avg', train_loss_record.avg, curr_iter) self.tb.add_scalar('data/train_loss_avg', train_iter_loss, curr_iter) self.tb.add_scalar('data/train_lr', self.opti.param_groups[1]['lr'], curr_iter) self.tb.add_text('train_data_names', str(train_names), curr_iter) tr_tb_out_1 = make_grid(otr_1, nrow=train_batch_size, padding=5) self.tb.add_image('train_output1', tr_tb_out_1, curr_iter) tr_tb_out_2 = make_grid(otr_2, nrow=train_batch_size, padding=5) self.tb.add_image('train_output2', tr_tb_out_2, curr_iter) tr_tb_out_4 = make_grid(otr_4, nrow=train_batch_size, padding=5) self.tb.add_image('train_output4', tr_tb_out_4, curr_iter) tr_tb_out_8 = make_grid(otr_8, nrow=train_batch_size, padding=5) self.tb.add_image('train_output8', tr_tb_out_8, curr_iter) tr_tb_out_16 = make_grid(otr_16, nrow=train_batch_size, padding=5) self.tb.add_image('train_output16', tr_tb_out_16, curr_iter) tr_tb_label = make_grid(train_labels, nrow=train_batch_size, padding=5) self.tb.add_image('train_labels', tr_tb_label, curr_iter) tr_tb_indata = make_grid(train_inputs, nrow=train_batch_size, padding=5) self.tb.add_image('train_data', tr_tb_indata, curr_iter) # 我這裏的圖像顯示的預處理以後要輸入網絡的圖片
下面是顯示的結果:
app
這裏關於學習率的設定, 根據參數名字中是否保安bias
(是否爲偏置項)來分別設置.dom
self.opti = optim.SGD( [ # 不對bias參數執行weight decay操做,weight decay主要的做用就是經過對網絡 # 層的參數(包括weight和bias)作約束(L2正則化會使得網絡層的參數更加平滑)達 # 到減小模型過擬合的效果。 {'params': [param for name, param in self.net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * self.args['lr']}, {'params': [param for name, param in self.net.named_parameters() if name[-4:] != 'bias'], 'lr': self.args['lr'], 'weight_decay': self.args['weight_decay']} ], momentum=self.args['momentum']) self.sche = self.__make_schedular() self.warmup_iters = self.args['warmup_epoch'] * len(self.tr_loader)
這裏實現了學習率預熱和幾個學習率衰減設定, 關鍵的地方在於使用學習率預熱的時候要注意對應的週期(迭代次數)如何設定, 要保證與正常的學習率衰減之間的平滑過渡.函數
def __lr_warmup(self, curr_iter): """ 實現學習率預熱, 在self.args['warmup_epoch']設定對應的恢復時對應的週期 """ warmup_lr = self.args['lr'] / self.warmup_iters self.opti.param_groups[0]['lr'] = 2 * warmup_lr * curr_iter self.opti.param_groups[1]['lr'] = warmup_lr * curr_iter def __make_schedular(self): if self.args['warmup_epoch'] > 0: epoch_num = self.args['epoch_num'] - self.args['warmup_epoch'] + 1 else: epoch_num = self.args['epoch_num'] # 計算總的迭代次數, 一個週期batch數量爲len(self.tr_loader) iter_num = epoch_num * len(self.tr_loader) if self.args['lr_type'] == 'exp': lamb = lambda curr_iter: pow((1 - (curr_iter / iter_num)), self.args['lr_decay']) scheduler = optim.lr_scheduler.LambdaLR(self.opti, lr_lambda=lamb) elif self.args['lr_type'] == 'cos': scheduler = optim.lr_scheduler.CosineAnnealingLR( self.opti, T_max=iter_num - 1, eta_min=4e-08) else: raise RuntimeError('沒有該學習率衰減設定') return scheduler
主要是根據訓練損失最小的時候進行所謂best
模型的保存. 以及在訓練結束的時候保存模型.工具
if self.args['save_best']: old_diff = val_loss_avg if self.args['has_val'] else train_loss_record.avg if old_diff < self.old_diff: self.old_diff = old_diff torch.save(self.net.state_dict(), self.path['best_net']) torch.save(self.opti.state_dict(), self.path['best_opti']) tqdm.write(f"epoch {epoch} 模型較好, 已保存") # 全部的週期迭代結束 torch.save(self.net.state_dict(), self.path['final_net']) torch.save(self.opti.state_dict(), self.path['final_opti'])
對於模型恢復, 能夠以下設定, 可是要注意, 想要繼續訓練, 須要注意不少地方, 例如tensorboard繼續顯示仍是刪除後從新顯示, 注意學習率的設定, 從新開始是否要使用學習率預熱, 學習率如何衰減等等細節.
if len(self.args['snapshot']) > 0: print('training resumes from ' + self.args['snapshot']) assert int(self.args['snapshot']) == self.args['start_epoch'] net_path = osp.join(self.path['pth_log'], self.args['snapshot'] + '.pth') opti_path = osp.join(self.path['pth_log'], self.args['snapshot'] + '_optim.pth') self.net.load_state_dict(torch.load(net_path)) self.opti.load_state_dict(torch.load(opti_path)) # bias的學習率大於weights的 # 繼續訓練的時候, 直接使用了最大的學習率 self.opti.param_groups[0]['lr'] = 2 * self.args['lr'] self.opti.param_groups[1]['lr'] = self.args['lr']
這裏使用了tqdm這個包, 來對訓練, 測試進度進行展現. 主要使用了trange
和tqdm
以及tqdm.write
來顯示.
導入: from tqdm import tqdm, trange
.
使用以下:
def train(self): tqdm_trange = trange(self.start_epoch, self.end_epoch, ncols=100) for epoch in tqdm_trange: tqdm_trange.set_description(f"tr=>epoch={epoch}") train_loss_record = AvgMeter() batch_tqdm = tqdm(enumerate(self.tr_loader), total=len(self.tr_loader), ncols=100, leave=False) for train_batch_id, train_data in batch_tqdm: batch_tqdm.set_description(f"net=>{self.args[self.args['NET']]['exp_name']}" f"lr=>{self.opti.param_groups[1]['lr']}") ... tqdm.write(f"epoch {epoch} 模型較好, 已保存")
顯示以下:
import os import os.path as osp from datetime import datetime import numpy as np import torch import torch.nn as nn import torch.optim as optim from PIL import Image from tensorboardX import SummaryWriter from torch.utils.data import DataLoader from torchvision import transforms from torchvision.utils import make_grid from tqdm import tqdm, trange from models.NearLoss import NearLoss from models.NearLossV2 import NearLossV2 from models.SLoss import SLoss from utils import joint_transforms from utils.config import arg_config, path_config from utils.datasets import ImageFolder from utils.misc import (AvgMeter, cal_fmeasure, cal_pr_mae_fm, check_mkdir, make_log) torch.manual_seed(2019) torch.multiprocessing.set_sharing_strategy('file_system') class Trainer(): def __init__(self, args, path): super(Trainer, self).__init__() # 無依賴屬性 self.args = args self.path = path self.dev = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu") self.to_pil = transforms.ToPILImage() self.old_diff = 100 # 設定一個足夠大的數, 來保存後期的損失 # 刪除以前的文件夾, 若是要刷新tensorboard, 最好是從新啓動一下tensorboard check_mkdir(self.path['pth_log']) if len(self.args['snapshot']) == 0: # if os.path.exists(self.path['tb']): # print(f"rm -rf {self.path['tb']}") # os.system(f"rm -rf {self.path['tb']}") check_mkdir(self.path['tb']) if self.args['save_pre']: if os.path.exists(self.path['save']): print(f"rm -rf {self.path['save']}") os.system(f"rm -rf {self.path['save']}") check_mkdir(self.path['save']) # 依賴與前面屬性的屬性 self.pth_path = self.path['best_net'] \ if osp.exists(self.path['best_net']) else self.path['final_net'] if self.args['tb_update'] > 0: self.tb = SummaryWriter(self.path['tb']) self.tr_loader, self.val_loader, self.te_loader = self.__make_loader() self.net = self.args[self.args['NET']]['net']().to(self.dev) # 學習率相關 self.opti = optim.SGD( [ # 不對bias參數執行weight decay操做,weight decay主要的做用就是經過對網絡 # 層的參數(包括weight和bias)作約束(L2正則化會使得網絡層的參數更加平滑)達 # 到減小模型過擬合的效果。 {'params': [param for name, param in self.net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * self.args['lr']}, {'params': [param for name, param in self.net.named_parameters() if name[-4:] != 'bias'], 'lr': self.args['lr'], 'weight_decay': self.args['weight_decay']} ], momentum=self.args['momentum']) self.sche = self.__make_schedular() self.warmup_iters = self.args['warmup_epoch'] * len(self.tr_loader) # 損失相關 self.crit = nn.BCELoss().to(self.dev) self.use_newloss = self.args['new_loss']['using'] if self.use_newloss: if self.args['new_loss']['type'] == 'sloss': self.crit_new = SLoss().to(self.dev) elif self.args['new_loss']['type'] == 'nearloss': self.crit_new = NearLoss().to(self.dev) elif self.args['new_loss']['type'] == 'nearlossv2': self.crit_new = NearLossV2(self.dev).to(self.dev) print(f"使用了附加的新損失{self.crit_new}") # 繼續訓練相關 self.start_epoch = self.args['start_epoch'] # 接着上次訓練 if self.args['end_epoch'] < self.args['epoch_num']: self.end_epoch = self.args['end_epoch'] else: self.end_epoch = self.args['epoch_num'] if len(self.args['snapshot']) > 0: print('training resumes from ' + self.args['snapshot']) assert int(self.args['snapshot']) == self.args['start_epoch'] net_path = osp.join(self.path['pth_log'], self.args['snapshot'] + '.pth') opti_path = osp.join(self.path['pth_log'], self.args['snapshot'] + '_optim.pth') self.net.load_state_dict(torch.load(net_path)) self.opti.load_state_dict(torch.load(opti_path)) # bias的學習率大於weights的 # 繼續訓練的時候, 直接使用了最大的學習率 self.opti.param_groups[0]['lr'] = 2 * self.args['lr'] self.opti.param_groups[1]['lr'] = self.args['lr'] def train(self): tqdm_trange = trange(self.start_epoch, self.end_epoch, ncols=100) for epoch in tqdm_trange: tqdm_trange.set_description(f"tr=>epoch={epoch}") train_loss_record = AvgMeter() batch_tqdm = tqdm(enumerate(self.tr_loader), total=len(self.tr_loader), ncols=100, leave=False) for train_batch_id, train_data in batch_tqdm: batch_tqdm.set_description(f"net=>{self.args[self.args['NET']]['exp_name']}" f"lr=>{self.opti.param_groups[1]['lr']}") if len(self.args['snapshot']) > 0: lr_epoch = epoch - int(self.args['snapshot']) else: lr_epoch = epoch """ 僅在從頭訓練的時候使用學習率預熱, 對於繼續訓練的時候, 再也不使用學習率預熱. """ curr_iter = train_batch_id + 1 + epoch * len(self.tr_loader) if len(self.args['snapshot']) > 0: curr_iter -= (self.start_epoch * len(self.tr_loader)) if self.args['lr_type'] == 'exp': self.sche.step(curr_iter) elif self.args['lr_type'] == 'cos': self.sche.step() else: if epoch < self.args['warmup_epoch']: self.__lr_warmup(curr_iter) else: if self.args['lr_type'] == 'exp': self.sche.step(curr_iter - self.warmup_iters) elif self.args['lr_type'] == 'cos': self.sche.step() train_inputs, train_labels, train_names = train_data train_inputs = train_inputs.to(self.dev) train_labels = train_labels.to(self.dev) self.opti.zero_grad() otr_1, otr_2, otr_4, otr_8, otr_16 = self.net(train_inputs) tr_loss_1 = self.crit(otr_1, train_labels) tr_loss_2 = self.crit(otr_2, train_labels) tr_loss_4 = self.crit(otr_4, train_labels) tr_loss_8 = self.crit(otr_8, train_labels) tr_loss_16 = self.crit(otr_16, train_labels) train_loss = tr_loss_1 + tr_loss_2 + tr_loss_4 + tr_loss_8 + tr_loss_16 if self.use_newloss: train_loss += self.args['new_loss']['beta'] * self.crit_new(otr_1, train_labels) """ 之後累加loss, 用loss.item(). 這個是必須的, 若是直接加, 那麼隨着訓練的進行, 會致使後來的loss具備很是大的graph, 可能會超內存. 然而total_loss只是用來看的, 因此不必進行維持這個graph! """ # 反向傳播使用的損失不須要item獲取數據 train_loss.backward() self.opti.step() # 僅在累計的時候使用item()獲取數據 train_iter_loss = train_loss.item() train_batch_size = train_inputs.size(0) train_loss_record.update(train_iter_loss, train_batch_size) if self.args['tb_update'] > 0 and curr_iter % self.args['tb_update'] == 0: self.tb.add_scalar('data/train_loss_avg', train_loss_record.avg, curr_iter) self.tb.add_scalar('data/train_loss_iter', train_iter_loss, curr_iter) self.tb.add_scalar('data/train_lr', self.opti.param_groups[1]['lr'], curr_iter) self.tb.add_text('train_data_names', str(train_names), curr_iter) tr_tb_out_1 = make_grid(otr_1, nrow=train_batch_size, padding=5) self.tb.add_image('train_output1', tr_tb_out_1, curr_iter) tr_tb_out_2 = make_grid(otr_2, nrow=train_batch_size, padding=5) self.tb.add_image('train_output2', tr_tb_out_2, curr_iter) tr_tb_out_4 = make_grid(otr_4, nrow=train_batch_size, padding=5) self.tb.add_image('train_output4', tr_tb_out_4, curr_iter) tr_tb_out_8 = make_grid(otr_8, nrow=train_batch_size, padding=5) self.tb.add_image('train_output8', tr_tb_out_8, curr_iter) tr_tb_out_16 = make_grid(otr_16, nrow=train_batch_size, padding=5) self.tb.add_image('train_output16', tr_tb_out_16, curr_iter) tr_tb_label = make_grid(train_labels, nrow=train_batch_size, padding=5) self.tb.add_image('train_labels', tr_tb_label, curr_iter) tr_tb_indata = make_grid(train_inputs, nrow=train_batch_size, padding=5) self.tb.add_image('train_data', tr_tb_indata, curr_iter) if self.args['has_val']: tqdm.write(f'train epoch {epoch} over, val start') self.net.eval() val_loss_avg = self.__val(lr_epoch) self.net.train() if self.args['save_best']: old_diff = val_loss_avg if self.args['has_val'] else train_loss_record.avg if old_diff < self.old_diff: self.old_diff = old_diff torch.save(self.net.state_dict(), self.path['best_net']) torch.save(self.opti.state_dict(), self.path['best_opti']) tqdm.write(f"epoch {epoch} 模型較好, 已保存") # 全部的週期迭代結束 torch.save(self.net.state_dict(), self.path['final_net']) torch.save(self.opti.state_dict(), self.path['final_opti']) def test(self): self.net.eval() self.net.load_state_dict(torch.load(self.pth_path)) gt_path = osp.join(self.path['test'], 'Mask') # 這裏坑了我很久,對於python的語法掌握的仍是不行,如果使用以前那樣的`[AvgMeter()]*256`的書寫 # 獲得的是256個相同地址的類,實際上就是同一個類,每次修改都會互相影響,會致使最終的結果錯誤 pres = [AvgMeter() for _ in range(256)] recs = [AvgMeter() for _ in range(256)] fams = AvgMeter() maes = AvgMeter() tqdm_iter = tqdm(enumerate(self.te_loader), total=len(self.te_loader), ncols=100, leave=True) for test_batch_id, test_data in tqdm_iter: tqdm_iter.set_description( f"{self.args[self.args['NET']]['exp_name']}:" f"te=>{test_batch_id + 1}") in_imgs, in_names = test_data inputs = in_imgs.to(self.dev) with torch.no_grad(): outputs = self.net(inputs) outputs_np = outputs.cpu().detach() for item_id, out_item in enumerate(outputs_np): gimg_path = osp.join(gt_path, in_names[item_id] + '.png') gt_img = Image.open(gimg_path).convert('L') out_img = self.to_pil(out_item).resize(gt_img.size) gt_img = np.array(gt_img) if self.args['save_pre']: oimg_path = osp.join(self.path['save'], in_names[item_id] + '.png') out_img.save(oimg_path) out_img = np.array(out_img) ps, rs, mae, fam = cal_pr_mae_fm(out_img, gt_img) for pidx, pdata in enumerate(zip(ps, rs)): p, r = pdata pres[pidx].update(p) recs[pidx].update(r) maes.update(mae) fams.update(fam) fm = cal_fmeasure([pre.avg for pre in pres], [rec.avg for rec in recs]) results = {'fm_thresholds': fm, 'fm': fams.avg, 'mae': maes.avg} return results def __val(self, lr_epoch): val_loss_record = AvgMeter() # fams = AvgMeter() # maes = AvgMeter() for val_batch_id, val_data in tqdm(enumerate(self.val_loader), total=len(self.val_loader), desc=f"val=>epoch={lr_epoch}", ncols=100, leave=True): val_inputs, val_labels = val_data val_inputs = val_inputs.to(self.dev) with torch.no_grad(): val_outputs = self.net(val_inputs) # # 從gpu搬運到cpu後, 修改numpy結果, 不會影響gpu值 # val_outputs_np = val_outputs.cpu().detach().numpy() # # numpy()方法會返回一個數組, 可是與本來的tensor共享存儲單元, 因此一個變都會變 # # 因此使用numpy的copy方法, 這個的實現是深拷貝. 數據獨立 # val_labels_np = val_labels.numpy().copy() # # val_outputs_np *= 255 # val_labels_np *= 255 # val_outputs_np = val_outputs_np.astype(np.uint8) # val_labels_np = val_labels_np.astype(np.uint8) # # for item_id, pre_gt_item in enumerate(zip(val_outputs_np, # val_labels_np)): # out_item, label_item = pre_gt_item # _, _, mae, fam = cal_pr_mae_fm(out_item, label_item) # maes.update(mae) # fams.update(fam) val_labels = val_labels.to(self.dev) # 經過item()使單元素張量轉化爲python標量, 由於這裏不須要反向傳播 val_iter_loss = self.crit(val_outputs, val_labels).item() if self.use_newloss: val_iter_loss += self.args['new_loss']['beta'] * \ self.crit_new(val_outputs, val_labels).item() val_batch_size = val_inputs.size(0) val_loss_record.update(val_iter_loss, val_batch_size) # 每個週期下都對應一個訓練階段與驗證階段, 因此這裏使用len(val)便可 curr_iter = val_batch_id + 1 + lr_epoch * len(self.val_loader) if self.args['tb_update'] > 0 and curr_iter % self.args['tb_update'] == 0: self.tb.add_scalar('data/val_loss_avg', val_loss_record.avg, curr_iter) self.tb.add_scalar('data/val_loss_iter', val_iter_loss, curr_iter) val_tb_out = make_grid(val_outputs, nrow=val_batch_size, padding=5) val_tb_label = make_grid(val_labels, nrow=val_batch_size, padding=5) self.tb.add_image('val_output', val_tb_out, curr_iter) self.tb.add_image('val_label', val_tb_label, curr_iter) return val_loss_record.avg def __lr_warmup(self, curr_iter): """ 實現學習率預熱, 在self.args['warmup_epoch']設定對應的恢復時對應的週期 """ warmup_lr = self.args['lr'] / self.warmup_iters self.opti.param_groups[0]['lr'] = 2 * warmup_lr * curr_iter self.opti.param_groups[1]['lr'] = warmup_lr * curr_iter def __make_schedular(self): if self.args['warmup_epoch'] > 0: epoch_num = self.args['epoch_num'] - self.args['warmup_epoch'] + 1 else: epoch_num = self.args['epoch_num'] # 計算總的迭代次數, 一個週期batch數量爲len(self.tr_loader) iter_num = epoch_num * len(self.tr_loader) if self.args['lr_type'] == 'exp': lamb = lambda curr_iter: pow((1 - (curr_iter / iter_num)), self.args['lr_decay']) scheduler = optim.lr_scheduler.LambdaLR(self.opti, lr_lambda=lamb) elif self.args['lr_type'] == 'cos': scheduler = optim.lr_scheduler.CosineAnnealingLR( self.opti, T_max=iter_num - 1, eta_min=4e-08) else: raise RuntimeError('沒有該學習率衰減設定') return scheduler def __make_loader(self): train_joint_transform = joint_transforms.Compose([ joint_transforms.RandomScaleCrop(base_size=self.args['base_size'], crop_size=self.args['crop_size']), joint_transforms.RandomHorizontallyFlip(), joint_transforms.RandomRotate(10) ]) train_img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) train_target_transform = transforms.ToTensor() test_val_img_transform = transforms.Compose([ transforms.Resize((self.args['crop_size'], self.args['crop_size'])), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) val_target_transform = transforms.Compose([ transforms.Resize( (self.args['crop_size'], self.args['crop_size'])), transforms.ToTensor(), ]) train_set = ImageFolder(self.path['train'], 'train', train_joint_transform, train_img_transform, train_target_transform) train_loader = DataLoader(train_set, batch_size=self.args['batch_size'], num_workers=self.args['num_workers'], shuffle=True, drop_last=False, pin_memory=True) # drop_last=True的時候, 會把最後的不能構成一個完整batch的數據刪掉, 可是這裏=False # 就不會刪掉, 該batch對應會減少. if self.args['has_val']: val_set = ImageFolder(self.path['val'], 'val', None, test_val_img_transform, val_target_transform) val_loader = DataLoader(val_set, batch_size=self.args['batch_size'], num_workers=self.args['num_workers'], shuffle=False, drop_last=False, pin_memory=True) else: val_loader = None test_set = ImageFolder(self.path['test'], 'test', None, test_val_img_transform, None) test_loader = DataLoader(test_set, batch_size=self.args['batch_size'], num_workers=self.args['num_workers'], shuffle=False, drop_last=False, pin_memory=True) return train_loader, val_loader, test_loader if __name__ == '__main__': trainer = Trainer(arg_config, path_config) make_log(path_config['log_txt'], f"\n{arg_config}") print('開始訓練...') trainer.train() print('開始測試...') begin = datetime.now() result = trainer.test() end = datetime.now() print(result) make_log(path_config['log_txt'], f"{result}\n, 測試花費時間:{end - begin}\n") with open('log_project.log', 'a') as log_pro: # 每運行一次就記錄一次參數設定 log_pro.write(f"\n\n{datetime.now()}\n{arg_config}\n{result}\n\n")
其中的一些工具函數:
import os import numpy as np class AvgMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def check_mkdir(dir_name): if not os.path.exists(dir_name): os.makedirs(dir_name) def make_log(path, context): with open(path, 'a') as log: log.write(f'{context}' + '\n') def count_parameters(model, bits=32): """ 計算模型參數大體的量 :param model: 模型 :param bits: 每一個參數的位數 :type bits: int :return: MB單位的估計值 :rtype: int """ # `numel` Returns the total number of elements in the input tensor. # 默認每一個元素都是float32的 Bytes = bits / 8 return sum(p.numel() for p in model.parameters() if p.requires_grad) * Bytes / (1024 * 1024) def cal_pr_mae_fm(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 prediction = prediction / 255. gt = gt / 255. # gt[gt != 0 ] = 1 # test results:{'fmeasure': 0.857414223946015, 'fam': 0.7792301650642437, 'mae': 0.04729127225177597} # gt[gt > 0.5] = 1 # test results:{'fmeasure': 0.8569724970147757, 'fam': 0.7739958746528544, 'mae': 0.042624657291724245} # 都不要 # test results:{'fmeasure': 0.8569724970147757, 'fam': 0.7719016419652358, 'mae': 0.042297395888889304} mae = np.mean(np.abs(prediction - gt)) hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) # threshold fm binary = np.zeros_like(prediction) threshold_fm = 2 * prediction.mean() if threshold_fm > 1: threshold_fm = 1 binary[prediction >= threshold_fm] = 1 tp = (binary * gt).sum() pre = (tp + eps) / (binary.sum() + eps) rec = (tp + eps) / (gt.sum() + eps) fm = 1.3 * pre * rec / (0.3 * pre + rec + eps) precision, recall = [], [] for threshold in range(256): threshold = threshold / 255. hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) precision.append((tp + eps) / (p + eps)) recall.append((tp + eps) / (t + eps)) return precision, recall, mae, fm def cal_fmeasure(precision, recall): assert len(precision) == 256 assert len(recall) == 256 beta_square = 0.3 max_fmeasure = max([(1 + beta_square) * p * r / (beta_square * p + r + 1e-10) for p, r in zip(precision, recall)]) return max_fmeasure