JavaShuo
欄目
標籤
機器學習之SVM的損失函數(Hinge Loss)
時間 2021-01-13
原文
原文鏈接
損失函數: 是用來衡量一個預測器在對輸入數據進行分類預測時的質量好壞。損失值越小,分類器的效果越好,越能反映輸入數據與輸出類別標籤的關係(雖然我們的模型有時候會過擬合——這是由於訓練數據被過度擬合,導致我們的模型失去了泛化能力)。 相反,損失值越大,我們需要花更多的精力來提升模型的準確率。就參數化學習而言,這涉及到調整參數,比如需要調節權重矩陣W或偏置向量B,以提高分類的精度。 SVM通常使用Hi
>>阅读原文<<
相關文章
1.
機器學習之SVM的損失函數(Hinge Loss)
2.
Hinge 損失函數與SVM
3.
機器學習 [合頁損失函數 Hinge Loss]
4.
機器學習中的損失函數 (着重比較:hinge loss vs softmax loss)
5.
損失函數:Hinge Loss(max margin)
6.
機器學習中的各種損失函數(Hinge loss,交叉熵,softmax)
7.
機器學習之損失函數
8.
機器學習之常見的損失函數(loss function)
9.
分類損失函數:Log loss,KL-divergence,cross entropy,logistic loss,Focal loss,Hinge loss,Exponential loss
10.
損失函數總結以及python實現:hinge loss(合頁損失)、softmax loss、cross_entropy loss(交叉熵損失)...
更多相關文章...
•
您已經學習了 XML Schema,下一步學習什麼呢?
-
XML Schema 教程
•
我們已經學習了 SQL,下一步學習什麼呢?
-
SQL 教程
•
適用於PHP初學者的學習線路和建議
•
漫談MySQL的鎖機制
相關標籤/搜索
機器學習之數學
機器學習
損失
hinge
loss
數學函數
svm
機器學習之二
機器學習之一
圖機器學習
瀏覽器信息
網站主機教程
Docker教程
學習路線
服務器
初學者
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Android Studio3.4中出現某個項目全部亂碼的情況之解決方式
2.
Packet Capture
3.
Android 開發之 仿騰訊視頻全部頻道 RecyclerView 拖拽 + 固定首個
4.
rg.exe佔用cpu導致卡頓解決辦法
5.
X64內核之IA32e模式
6.
DIY(也即Build Your Own) vSAN時,選擇SSD需要注意的事項
7.
選擇深圳網絡推廣外包要注意哪些問題
8.
店鋪運營做好選款、測款的工作需要注意哪些東西?
9.
企業找SEO外包公司需要注意哪幾點
10.
Fluid Mask 摳圖 換背景教程
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
機器學習之SVM的損失函數(Hinge Loss)
2.
Hinge 損失函數與SVM
3.
機器學習 [合頁損失函數 Hinge Loss]
4.
機器學習中的損失函數 (着重比較:hinge loss vs softmax loss)
5.
損失函數:Hinge Loss(max margin)
6.
機器學習中的各種損失函數(Hinge loss,交叉熵,softmax)
7.
機器學習之損失函數
8.
機器學習之常見的損失函數(loss function)
9.
分類損失函數:Log loss,KL-divergence,cross entropy,logistic loss,Focal loss,Hinge loss,Exponential loss
10.
損失函數總結以及python實現:hinge loss(合頁損失)、softmax loss、cross_entropy loss(交叉熵損失)...
>>更多相關文章<<