本文基於java構建Flink1.9版本入門程序,須要Maven 3.0.4 和 Java 8 以上版本。須要安裝Netcat進行簡單調試。
這裏簡述安裝過程,並使用IDEA進行開發一個簡單流處理程序,本地調試或者提交到Flink上運行,Maven與JDK安裝這裏不作說明。
1、Flink簡介html
Flink誕生於歐洲的一個大數據研究項目StratoSphere。該項目是柏林工業大學的一個研究性項目。早期,Flink是作Batch計算的,可是在2014年,StratoSphere裏面的核心成員孵化出Flink,同年將Flink捐贈Apache,並在後來成爲Apache的頂級大數據項目,同時Flink計算的主流方向被定位爲Streaming,即用流式計算來作全部大數據的計算,這就是Flink技術誕生的背景。
2015開始阿里開始介入flink 負責對資源調度和流式sql的優化,成立了阿里內部版本blink在最近更新的1.9版本中,blink開始合併入flink,
將來flink也將支持java,scala,python等更多語言,並在機器學習領域施展拳腳。
2、Flink開發環境搭建
首先要想運行Flink,咱們須要下載並解壓Flink的二進制包,下載地址以下:https://flink.apache.org/down...
咱們能夠選擇Flink與Scala結合版本,這裏咱們選擇最新的1.9版本Apache Flink 1.9.0 for Scala 2.12進行下載。java
Flink在Windows和Linux下的安裝與部署能夠查看 Flink快速入門--安裝與示例運行,這裏演示windows版。
安裝成功後,啓動cmd命令行窗口,進入flink文件夾,運行bin目錄下的start-cluster.bat
$ cd flink$ cd bin$ start-cluster.batStarting a local cluster with one JobManager process and one TaskManager process.You can terminate the processes via CTRL-C in the spawned shell windows.Web interface by default on http://localhost:8081/.
顯示啓動成功後,咱們在瀏覽器訪問 http://localhost:8081/能夠看到flink的管理頁面。python
3、Flink快速體驗
請保證安裝好了flink,還須要Maven 3.0.4 和 Java 8 以上版本。這裏簡述Maven構建過程。
其餘詳細構建方法歡迎查看:快速構建第一個Flink工程
一、搭建Maven工程
使用Flink Maven Archetype構建一個工程。
$ mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.9.0
你能夠編輯本身的artifactId groupId
目錄結構以下:
$ tree quickstart/quickstart/├── pom.xml└── src └── main ├── java │ └── org │ └── myorg │ └── quickstart │ ├── BatchJob.java │ └── StreamingJob.java └── resources └── log4j.properties
在pom中核心依賴:
<dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.11</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>${flink.version}</version> </dependency></dependencies>二、編寫代碼
StreamingJob
import org.apache.flink.api.common.functions.FlatMapFunction;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.util.Collector;public class StreamingJob { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream<Tuple2<String, Integer>> dataStreaming = env .socketTextStream("localhost", 9999) .flatMap(new Splitter()) .keyBy(0) .timeWindow(Time.seconds(5)) .sum(1); dataStreaming.print(); // execute program env.execute("Flink Streaming Java API Skeleton"); } public static class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> { @Override public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out) throws Exception { for(String word : sentence.split(" ")){ out.collect(new Tuple2<String, Integer>(word, 1)); } } }}三、調試程序
安裝netcat工具進行簡單調試。
啓動netcat 輸入:
nc -l 9999
啓動程序linux
在netcat中輸入幾個單詞 逗號分隔sql
在程序一端查看結果shell
四、程序提交到Flink
啓動flink
windows爲 start-cluster.bat linux爲start-cluster.sh
localhost:8081查看管理頁面apache
經過maven對代碼打包編程
將打好的包提交到flink上windows
查看log
tail -f log/flink-*-jobmanager.out
在netcat中繼續輸入單詞,在Running Jobs中查看做業狀態,在log中查看輸出。api
4、Flink 編程模型
Flink提供不一樣級別的抽象來開發流/批處理應用程序。
最低級抽象只提供有狀態流。
在實踐中,大多數應用程序不須要上述低級抽象,而是針對Core API編程, 如DataStream API(有界/無界流)和DataSet API(有界數據集)。
Table Api聲明瞭一個表,遵循關係模型。
最高級抽象是SQL。
咱們這裏只用到了DataStream API。
Flink程序的基本構建塊是流和轉換。
一個程序的基本構成:
l 獲取execution environment
l 加載/建立原始數據
l 指定這些數據的轉化方法
l 指定計算結果的存放位置
l 觸發程序執行
5、DataStreaming API使用一、獲取execution environment
StreamExecutionEnvironment是全部Flink程序的基礎,獲取方法有:
getExecutionEnvironment()
createLocalEnvironment()
createRemoteEnvironment(String host, int port, String ... jarFiles)
通常狀況下使用getExecutionEnvironment。若是你在IDE或者常規java程序中執行能夠經過createLocalEnvironment建立基於本地機器的StreamExecutionEnvironment。若是你已經建立jar程序但願經過invoke方式獲取裏面的getExecutionEnvironment方法可使用createRemoteEnvironment方式。
二、加載/建立原始數據
StreamExecutionEnvironment提供的一些訪問數據源的接口
(1)基於文件的數據源
readTextFile(path)readFile(fileInputFormat, path)readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo)
(2)基於Socket的數據源(本文使用的)
l socketTextStream
(3)基於Collection的數據源fromCollection(Collection)fromCollection(Iterator, Class)fromElements(T ...)fromParallelCollection(SplittableIterator, Class)generateSequence(from, to)三、轉化方法(1)Map方式:DataStream -> DataStream功能:拿到一個element並輸出一個element,相似Hive中的UDF函數舉例:DataStream<Integer> dataStream = //...dataStream.map(new MapFunction<Integer, Integer>() { @Override public Integer map(Integer value) throws Exception { return 2 * value; }});(2)FlatMap方式:DataStream -> DataStream功能:拿到一個element,輸出多個值,相似Hive中的UDTF函數舉例:dataStream.flatMap(new FlatMapFunction<String, String>() { @Override public void flatMap(String value, Collector<String> out) throws Exception { for(String word: value.split(" ")){ out.collect(word); } }});(3)Filter方式:DataStream -> DataStream功能:針對每一個element判斷函數是否返回true,最後只保留返回true的element舉例:dataStream.filter(new FilterFunction<Integer>() { @Override public boolean filter(Integer value) throws Exception { return value != 0; }});(4)KeyBy方式:DataStream -> KeyedStream功能:邏輯上將流分割成不相交的分區,每一個分區都是相同key的元素舉例:dataStream.keyBy("someKey") // Key by field "someKey"dataStream.keyBy(0) // Key by the first element of a Tuple(5)Reduce方式:KeyedStream -> DataStream功能:在keyed data stream中進行輪訓reduce。舉例:keyedStream.reduce(new ReduceFunction<Integer>() { @Override public Integer reduce(Integer value1, Integer value2) throws Exception { return value1 + value2; }});(6)Aggregations方式:KeyedStream -> DataStream功能:在keyed data stream中進行聚合操做舉例:keyedStream.sum(0);keyedStream.sum("key");keyedStream.min(0);keyedStream.min("key");keyedStream.max(0);keyedStream.max("key");keyedStream.minBy(0);keyedStream.minBy("key");keyedStream.maxBy(0);keyedStream.maxBy("key");(7)Window方式:KeyedStream -> WindowedStream功能:在KeyedStream中進行使用,根據某個特徵針對每一個key用windows進行分組。舉例:dataStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data(8)WindowAll方式:DataStream -> AllWindowedStream功能:在DataStream中根據某個特徵進行分組。舉例:dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data(9)Union方式:DataStream* -> DataStream功能:合併多個數據流成一個新的數據流舉例:dataStream.union(otherStream1, otherStream2, ...);(10)Split方式:DataStream -> SplitStream功能:將流分割成多個流舉例:SplitStream<Integer> split = someDataStream.split(new OutputSelector<Integer>() { @Override public Iterable<String> select(Integer value) { List<String> output = new ArrayList<String>(); if (value % 2 == 0) { output.add("even"); } else { output.add("odd"); } return output; }});(11)Select方式:SplitStream -> DataStream功能:從split stream中選擇一個流舉例:SplitStream<Integer> split;DataStream<Integer> even = split.select("even");DataStream<Integer> odd = split.select("odd");DataStream<Integer> all = split.select("even","odd");四、輸出數據writeAsText()writeAsCsv(...)print() / printToErr() writeUsingOutputFormat() / FileOutputFormatwriteToSocketaddSink