# 運行前,請在Rstudio中菜單欄選擇「Session - Set work directory -- Choose directory」,彈窗選擇以前分析目錄中的result文件夾 # 安裝相關軟件包,若是末安裝改成TRUE運行便可安裝 if (FALSE){ source("https://bioconductor.org/biocLite.R") biocLite(c("ggplot2")) } # 加載相關軟件包 library("ggplot2") # 讀入實驗設計和Alpha多樣性值 design = read.table("design.txt", header=T, row.names= 1, sep="\t") alpha = read.table("alpha.txt", header=T, row.names= 1, sep="\t") # 以Observed OTU爲例進行可視化和統計分析,其它指數將observed_otus替換爲shannon, chao1, PD_whole_tree便可計算 # 合併Alpha指數與實驗設計 index = cbind(alpha, design[match(rownames(alpha), rownames(design)), ]) # 繪圖代碼、預覽、保存PDF p = ggplot(index, aes(x=genotype, y=observed_otus, color=genotype))+ geom_boxplot(alpha=1, outlier.size=0, size=0.7, width=0.5, fill="transparent") + geom_jitter( position=position_jitter(0.17), size=1, alpha=0.7)+ labs(x="Groups", y="observed_otus index") p ggsave(paste("alpha_observed_otus.pdf", sep=""), p, width = 5, height = 3) # 統計組間是否顯著差別 # anova對指數與分組統計 observed_otus_stats <- aov(observed_otus ~ genotype, data = index) # 使用TukeyHSD對組間進行檢驗,效正pvalue Tukey_HSD_observed_otus <- TukeyHSD(observed_otus_stats, ordered = FALSE, conf.level = 0.95) # 結果中提取須要的結果 Tukey_HSD_observed_otus_table <- as.data.frame(Tukey_HSD_observed_otus$genotype) # 預覽結果 Tukey_HSD_observed_otus_table # 保存結果到文件,按Pvaule值由小到大排序 write.table(Tukey_HSD_observed_otus_table[order(Tukey_HSD_observed_otus_table$p, decreasing=FALSE), ], file="alpha_observed_otus_stats.txt",append = FALSE, quote = FALSE, sep="\t",eol = "\n", na = "NA", dec = ".", row.names = TRUE,col.names = TRUE)
各組間的統計結果以下:主要看最後一列p adj(Adjust P-value)是否顯著,本文數據不顯著bash
diff lwr upr p adj OE-KO -7.52380952380952 -24.480725165752 9.43310611813294 0.515429907536906 WT-KO -6.11111111111111 -21.9728532782553 9.75063105603303 0.604309699204896 WT-OE 1.4126984126984 -15.5442172292441 18.3696140546409 0.976169656924344