這裏是另外一個ROT13 server的異步實現。此次,它使用libevent 2 來替代select。注意fd_sets已經再也不使用,取而代之的是: 咱們使用一個event_base結構關聯或者取消關聯事件,它內部實現了select、poll、epoll、kqueue等。編程
Example: A low-level ROT13 server with Libeventwindows
/* For sockaddr_in */ #include <netinet/in.h> /* For socket functions */ #include <sys/socket.h> /* For fcntl */ #include <fcntl.h> #include <event2/event.h> #include <assert.h> #include <unistd.h> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <errno.h> #define MAX_LINE 16384void do_read(evutil_socket_t fd, short events, void *arg);void do_write(evutil_socket_t fd, short events, void *arg);charrot13_char(char c) { /* We don't want to use isalpha here; setting the locale would change * which characters are considered alphabetical. */ if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M')) return c + 13; else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z')) return c - 13; else return c; } struct fd_state { char buffer[MAX_LINE]; size_t buffer_used; size_t n_written; size_t write_upto; struct event *read_event; struct event *write_event; }; struct fd_state *alloc_fd_state(struct event_base *base, evutil_socket_t fd) { struct fd_state *state = malloc(sizeof(struct fd_state)); f (!state) return NULL; state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state); if (!state->read_event) { free(state); return NULL; } state->write_event = event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state); if (!state->write_event) { event_free(state->read_event); free(state); return NULL; } state->buffer_used = state->n_written = state->write_upto = 0; assert(state->write_event); return state; } void free_fd_state(struct fd_state *state) { event_free(state->read_event); event_free(state->write_event); free(state); } void do_read(evutil_socket_t fd, short events, void *arg) { struct fd_state *state = arg; char buf[1024]; int i; ssize_t result; while (1) { assert(state->write_event); result = recv(fd, buf, sizeof(buf), 0); if (result <= 0) break; for (i=0; i < result; ++i) { if (state->buffer_used < sizeof(state->buffer)) state->buffer[state->buffer_used++] = rot13_char(buf[i]); if (buf[i] == '\n') { assert(state->write_event); event_add(state->write_event, NULL); state->write_upto = state->buffer_used; } } } if (result == 0) { free_fd_state(state); } else if (result < 0) { if (errno == EAGAIN) // XXXX use evutil macro return; perror("recv"); free_fd_state(state); } } void do_write(evutil_socket_t fd, short events, void *arg) { struct fd_state *state = arg; while (state->n_written < state->write_upto) { ssize_t result = send(fd, state->buffer + state->n_written, state->write_upto - state->n_written, 0); if (result < 0) { if (errno == EAGAIN) // XXX use evutil macro return; free_fd_state(state); return; } assert(result != 0); state->n_written += result; } if (state->n_written == state->buffer_used) state->n_written = state->write_upto = state->buffer_used = 1; event_del(state->write_event); } void do_accept(evutil_socket_t listener, short event, void *arg) { struct event_base *base = arg; struct sockaddr_storage ss; socklen_t slen = sizeof(ss); int fd = accept(listener, (struct sockaddr*)&ss, &slen); if (fd < 0) { // XXXX eagain?? perror("accept"); } else if (fd > FD_SETSIZE) { close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */ } else { struct fd_state *state; evutil_make_socket_nonblocking(fd); state = alloc_fd_state(base, fd); assert(state); /*XXX err*/ assert(state->write_event); event_add(state->read_event, NULL); } } void run(void) { evutil_socket_t listener; struct sockaddr_in sin; struct event_base *base; struct event *listener_event; base = event_base_new(); if (!base) return; /*XXXerr*/ sin.sin_family = AF_INET; sin.sin_addr.s_addr = 0; sin.sin_port = htons(40713); listener = socket(AF_INET, SOCK_STREAM, 0); evutil_make_socket_nonblocking(listener); #ifndef WIN32 { int one = 1; setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); } #endif if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) { perror("bind"); return; } if (listen(listener, 16)<0) { perror("listen"); return; } listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base); /*XXX check it */ event_add(listener_event, NULL); event_base_dispatch(base); } int main(int c, char **v) { setvbuf(stdout, NULL, _IONBF, 0); run(); return 0; }
(另外須要注意的地方:咱們使用evutil_socket_t代替int來表示一個socket;使用evutil_make_socket_nonblocking代替fcntl(O_NONBLOCK)讓套接字變成非阻塞方式,這些改變讓咱們的代碼兼容Win32下的一些分散的網絡API) 網絡
你可能已經意識到咱們的代碼變得更加高效,同時它也變得更復雜。回到以前當咱們forking時,咱們不須要爲每個鏈接管理一個緩衝,咱們僅僅爲每個進程帶有一個單獨的基於堆棧上的緩衝。咱們不須要明確地去跟蹤每個套接字的讀取或者寫入事件,那已經在庫的代碼內部實現了。而且咱們也不須要一個結構去跟蹤每個操做是否已經完成,咱們僅使用循環和堆棧變量就能夠了。
異步
再者,若是你有windows下網絡編程經驗,你將會意識到,上面的例子中,libevent的使用可能沒有帶來性能的優化。在window中,實現高效異步IO的方式並非使用像select這樣的接口,而是IOCP(完成端口)。不像其餘的一些高效的網絡API,當套接字就緒能夠操做時IOCP並不處理並告知你的應用程序須要進一步處理。取而代之的是,應用程序調用一個windows網絡API去發起操做調用,稍後由IOCP通知應用程序操做已經完成了。socket
幸運的是,libevent2 的 bufferevents 接口解決了這些問題:它使編碼更容易,而且提供了高效的實如今windows和Unix上的接口。ide