Domain Adaptive Faster R-CNN:經典域自適應目標檢測算法,解決現實中痛點,代碼開源 | CVPR2018

論文從理論的角度出發,對目標檢測的域自適應問題進行了深入的研究,基於H-divergence的對抗訓練提出了DA Faster R-CNN,從圖片級和實例級兩種角度進行域對齊,並且加入一致性正則化來學習域不變的RPN。從實驗來看,論文的方法十分有效,這是一個很符合實際需求的研究,能解決現實中場景多樣,訓練數據標註有限的情況。   來源:曉飛的算法工程筆記 公衆號 論文: Domain Adapti
相關文章
相關標籤/搜索