tensorflow版本fastrcnn實現,原github:https://github.com/endernewton/tf-faster-rcnngit
參考:1. https://github.com/CharlesShang/TFFRCNN github
2. http://www.javashuo.com/article/p-xoojthvg-nq.html測試
基本能夠按照spa
Train your own model接下來主要實現訓練好的數據對Pascal voc2007數據集進行測試:.net
1.將數據集下載完成後解壓3d
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
tar xvf VOCtrainval_06-Nov-2007.tar tar xvf VOCtest_06-Nov-2007.tar tar xvf VOCdevkit_08-Jun-2007.tar
將文件夾以VOCdevkit2007命名copy到data下,造成如下目錄結構/tf-faster-rcnn/data/VOCdevkit2007/code
其下應該有如下文件(也能夠參照CharlesShang中用軟連接):blog
2.若是完成了第一步demo測試那麼就能夠直接運行test(沒有須要下載pre-trained model參照原git中ip
1.Download pre-trained models and weights. ):get
運行以前還須要修改tf-faster-rcnn/lib/datasets/voc_eval.py下105行和121行。
105:將
cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile)
註釋掉改成
cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile.split("/")[-1].split(".")[0])
121行w改成wb
運行測試命令:
GPU_ID=0
./experiments/scripts/test_faster_rcnn.sh $GPU_ID pascal_voc_0712 res101
GPU_ID本身看用哪一塊,res101:下載的model pascal是數據集格式
3.運行結果以下: