JavaShuo
欄目
標籤
A thorough understanding of on-policy and off-policy in Reinforcement learning
時間 2020-12-24
標籤
on-policy
off-policy
強化學習
简体版
原文
原文鏈接
一句話區分on-policy and off-policy: 看behaviour policy和current policy是不是同一個就OK了! 我這篇文章主要想借着理解on-policy和off-policy的過程來加深對其他RL算法的認識。因爲萬事萬物總是相互聯繫的,所以在自己探究,琢磨爲什麼有些算法是on-policy或者off-policy的過程中,對於它們的本質也有了更深的認識。 首
>>阅读原文<<
相關文章
1.
Policy in Reinforcement Learning
2.
(轉)Applications of Reinforcement Learning in Real World
3.
Application of Opposition-Based Reinforcement Learning in Image Segmentation
4.
What’s New in Deep Learning Research: Understanding Meta-Learning
5.
Reinforcement learning and Deep learning
6.
Reinforcement Learning in Continuous State and Action Spaces: A Brief Note
7.
Semantic Segmentation: A thorough Review
8.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
9.
Imitation Learning | A brief overview of Imitation Learning
10.
Reinforcement Learning, Fast and Slow
更多相關文章...
•
SQL IN 操作符
-
SQL 教程
•
Swift for-in 循環
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
Kotlin學習(二)基本類型
相關標籤/搜索
understanding
reinforcement
learning
a'+'a
for...of
action.....and
between...and
for..of
react+and
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗輸入法
2.
用實例講DynamicResource與StaticResource的區別
3.
firewall防火牆
4.
頁面開發之res://ieframe.dll/http_404.htm#問題處理
5.
[實踐通才]-Unity性能優化之Drawcalls入門
6.
中文文本錯誤糾正
7.
小A大B聊MFC:神奇的靜態文本控件--初識DC
8.
手扎20190521——bolg示例
9.
mud怎麼存東西到包_將MUD升級到Unity 5
10.
GMTC分享——當插件化遇到 Android P
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Policy in Reinforcement Learning
2.
(轉)Applications of Reinforcement Learning in Real World
3.
Application of Opposition-Based Reinforcement Learning in Image Segmentation
4.
What’s New in Deep Learning Research: Understanding Meta-Learning
5.
Reinforcement learning and Deep learning
6.
Reinforcement Learning in Continuous State and Action Spaces: A Brief Note
7.
Semantic Segmentation: A thorough Review
8.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
9.
Imitation Learning | A brief overview of Imitation Learning
10.
Reinforcement Learning, Fast and Slow
>>更多相關文章<<