# 隨機梯度降低 from sklearn.linear_model import SGDRegressor from sklearn.preprocessing import StandardScaler # 歸一化數據 std = StandardScaler() std.fit(X_train) X_train_std = std.transform(X_train) X_test_std = std.transform(X_test) # n_iter表明瀏覽多少次,默認是5 sgd_reg = SGDRegressor(n_iter=100) sgd_reg.fit(X_train_std, y_train) sgd_reg.score(X_test_std, y_test)