該模塊用於接收一個HTML或XML字符串,而後將其進行格式化,以後遍可使用他提供的方法進行快速查找指定元素,從而使得在HTML或XML中查找指定元素變得簡單。html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from
bs4
import
BeautifulSoup
html_doc
=
"""
<html><head><title>The Dormouse's story</title></head>
<body>
asdf
<div class="title">
<b>The Dormouse's story總共</b>
<h1>f</h1>
</div>
<div class="story">Once upon a time there were three little sisters; and their names were
<a class="sister0" id="link1">Els<span>f</span>ie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</div>
ad<br/>sf
<p class="story">...</p>
</body>
</html>
"""
soup
=
BeautifulSoup(html_doc, features
=
"lxml"
)
# 找到第一個a標籤
tag1
=
soup.find(name
=
'a'
)
# 找到全部的a標籤
tag2
=
soup.find_all(name
=
'a'
)
# 找到id=link2的標籤
tag3
=
soup.select(
'#link2'
)
|
使用示例:前端
1
2
3
4
5
6
7
8
9
10
11
|
from
bs4
import
BeautifulSoup
html_doc
=
"""
<html><head><title>The Dormouse's story</title></head>
<body>
...
</body>
</html>
"""
soup
=
BeautifulSoup(html_doc, features
=
"lxml"
)
|
1. name,標籤名稱python
1
2
3
4
5
|
# tag = soup.find('a')
# name = tag.name # 獲取
# print(name)
# tag.name = 'span' # 設置
# print(soup)
|
2. attr,標籤屬性git
1
2
3
4
5
6
|
# tag = soup.find('a')
# attrs = tag.attrs # 獲取
# print(attrs)
# tag.attrs = {'ik':123} # 設置
# tag.attrs['id'] = 'iiiii' # 設置
# print(soup)
|
3. children,全部子標籤github
1
2
|
# body = soup.find('body')
# v = body.children
|
4. children,全部子子孫孫標籤ajax
1
2
|
# body = soup.find('body')
# v = body.descendants
|
5. clear,將標籤的全部子標籤所有清空(保留標籤名)算法
1
2
3
|
# tag = soup.find('body')
# tag.clear()
# print(soup)
|
6. decompose,遞歸的刪除全部的標籤json
1
2
3
|
# body = soup.find('body')
# body.decompose()
# print(soup)
|
7. extract,遞歸的刪除全部的標籤,並獲取刪除的標籤服務器
1
2
3
|
# body = soup.find('body')
# v = body.extract()
# print(soup)
|
8. decode,轉換爲字符串(含當前標籤);decode_contents(不含當前標籤)cookie
1
2
3
4
|
# body = soup.find('body')
# v = body.decode()
# v = body.decode_contents()
# print(v)
|
9. encode,轉換爲字節(含當前標籤);encode_contents(不含當前標籤)
1
2
3
4
|
# body = soup.find('body')
# v = body.encode()
# v = body.encode_contents()
# print(v)
|
10. find,獲取匹配的第一個標籤
1
2
3
4
5
|
# tag = soup.find('a')
# print(tag)
# tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tag)
|
11. find_all,獲取匹配的全部標籤
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
# tags = soup.find_all('a')
# print(tags)
# tags = soup.find_all('a',limit=1)
# print(tags)
# tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tags)
# ####### 列表 #######
# v = soup.find_all(name=['a','div'])
# print(v)
# v = soup.find_all(class_=['sister0', 'sister'])
# print(v)
# v = soup.find_all(text=['Tillie'])
# print(v, type(v[0]))
# v = soup.find_all(id=['link1','link2'])
# print(v)
# v = soup.find_all(href=['link1','link2'])
# print(v)
# ####### 正則 #######
import
re
# rep = re.compile('p')
# rep = re.compile('^p')
# v = soup.find_all(name=rep)
# print(v)
# rep = re.compile('sister.*')
# v = soup.find_all(class_=rep)
# print(v)
# rep = re.compile('http://www.oldboy.com/static/.*')
# v = soup.find_all(href=rep)
# print(v)
# ####### 方法篩選 #######
# def func(tag):
# return tag.has_attr('class') and tag.has_attr('id')
# v = soup.find_all(name=func)
# print(v)
# ## get,獲取標籤屬性
# tag = soup.find('a')
# v = tag.get('id')
# print(v)
|
12. has_attr,檢查標籤是否具備該屬性
1
2
3
|
# tag = soup.find('a')
# v = tag.has_attr('id')
# print(v)
|
13. get_text,獲取標籤內部文本內容
1
2
3
|
# tag = soup.find('a')
# v = tag.get_text
# print(v)
|
14. index,檢查標籤在某標籤中的索引位置
1
2
3
4
5
6
7
|
# tag = soup.find('body')
# v = tag.index(tag.find('div'))
# print(v)
# tag = soup.find('body')
# for i,v in enumerate(tag):
# print(i,v)
|
15. is_empty_element,是不是空標籤(是否能夠是空)或者自閉合標籤,
判斷是不是以下標籤:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
1
2
3
|
# tag = soup.find('br')
# v = tag.is_empty_element
# print(v)
|
16. 當前的關聯標籤
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
# soup.next
# soup.next_element
# soup.next_elements
# soup.next_sibling
# soup.next_siblings
#
# tag.previous
# tag.previous_element
# tag.previous_elements
# tag.previous_sibling
# tag.previous_siblings
#
# tag.parent
# tag.parents
|
17. 查找某標籤的關聯標籤
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# tag.find_next(...)
# tag.find_all_next(...)
# tag.find_next_sibling(...)
# tag.find_next_siblings(...)
# tag.find_previous(...)
# tag.find_all_previous(...)
# tag.find_previous_sibling(...)
# tag.find_previous_siblings(...)
# tag.find_parent(...)
# tag.find_parents(...)
# 參數同find_all
|
18. select,select_one, CSS選擇器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
soup.select(
"title"
)
soup.select(
"p nth-of-type(3)"
)
soup.select(
"body a"
)
soup.select(
"html head title"
)
tag
=
soup.select(
"span,a"
)
soup.select(
"head > title"
)
soup.select(
"p > a"
)
soup.select(
"p > a:nth-of-type(2)"
)
soup.select(
"p > #link1"
)
soup.select(
"body > a"
)
soup.select(
"#link1 ~ .sister"
)
soup.select(
"#link1 + .sister"
)
soup.select(
".sister"
)
soup.select(
"[class~=sister]"
)
soup.select(
"#link1"
)
soup.select(
"a#link2"
)
soup.select(
'a[href]'
)
soup.select(
'a[href="http://example.com/elsie"]'
)
soup.select(
'a[href^="http://example.com/"]'
)
soup.select(
'a[href$="tillie"]'
)
soup.select(
'a[href*=".com/el"]'
)
from
bs4.element
import
Tag
def
default_candidate_generator(tag):
for
child
in
tag.descendants:
if
not
isinstance
(child, Tag):
continue
if
not
child.has_attr(
'href'
):
continue
yield
child
tags
=
soup.find(
'body'
).select(
"a"
, _candidate_generator
=
default_candidate_generator)
print
(
type
(tags), tags)
from
bs4.element
import
Tag
def
default_candidate_generator(tag):
for
child
in
tag.descendants:
if
not
isinstance
(child, Tag):
continue
if
not
child.has_attr(
'href'
):
continue
yield
child
tags
=
soup.find(
'body'
).select(
"a"
, _candidate_generator
=
default_candidate_generator, limit
=
1
)
print
(
type
(tags), tags)
|
19. 標籤的內容
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# tag = soup.find('span')
# print(tag.string) # 獲取
# tag.string = 'new content' # 設置
# print(soup)
# tag = soup.find('body')
# print(tag.string)
# tag.string = 'xxx'
# print(soup)
# tag = soup.find('body')
# v = tag.stripped_strings # 遞歸內部獲取全部標籤的文本
# print(v)
|
20.append在當前標籤內部追加一個標籤
1
2
3
4
5
6
7
8
9
10
|
# tag = soup.find('body')
# tag.append(soup.find('a'))
# print(soup)
#
# from bs4.element import Tag
# obj = Tag(name='i',attrs={'id': 'it'})
# obj.string = '我是一個新來的'
# tag = soup.find('body')
# tag.append(obj)
# print(soup)
|
21.insert在當前標籤內部指定位置插入一個標籤
1
2
3
4
5
6
|
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一個新來的'
# tag = soup.find('body')
# tag.insert(2, obj)
# print(soup)
|
22. insert_after,insert_before 在當前標籤後面或前面插入
1
2
3
4
5
6
7
|
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一個新來的'
# tag = soup.find('body')
# # tag.insert_before(obj)
# tag.insert_after(obj)
# print(soup)
|
23. replace_with 在當前標籤替換爲指定標籤
1
2
3
4
5
6
|
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一個新來的'
# tag = soup.find('div')
# tag.replace_with(obj)
# print(soup)
|
24. 建立標籤之間的關係
1
2
3
4
|
# tag = soup.find('div')
# a = soup.find('a')
# tag.setup(previous_sibling=a)
# print(tag.previous_sibling)
|
25. wrap,將指定標籤把當前標籤包裹起來
1
2
3
4
5
6
7
8
9
10
11
|
# from bs4.element import Tag
# obj1 = Tag(name='div', attrs={'id': 'it'})
# obj1.string = '我是一個新來的'
#
# tag = soup.find('a')
# v = tag.wrap(obj1)
# print(soup)
# tag = soup.find('a')
# v = tag.wrap(soup.find('p'))
# print(soup)
|
26. unwrap,去掉當前標籤,將保留其包裹的標籤
1
2
3
|
# tag = soup.find('a')
# v = tag.unwrap()
# print(soup)
|
更多參數官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/
把下面代碼,加入到代碼中,能夠下載網站源碼到本地分析
with open('weixin.html','wb') as f: f.write(wx_login_page.content)
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: nulige import requests from bs4 import BeautifulSoup response = requests.get( url='http://www.autohome.com.cn/news/' ) #解決爬蟲亂碼問題 response.encoding = response.apparent_encoding # 生成Soup對象, soup = BeautifulSoup(response.text, features='html.parser') # find查找第一個符合條件的對象 target = soup.find(id='auto-channel-lazyload-article') #find_all查找全部符合的對象,查找出來的值在列表中 li_list = target.find_all('li') #循環拿到具體每一個對象 for i in li_list: a = i.find('a') if a: print(a.attrs.get('href')) # # .attrs查找到屬性 txt = a.find('h3').text # 是對象 img_url = a.find('img').attrs.get('src') print(img_url) # 再發一個請求 img_response = requests.get(url=img_url) import uuid file_name = str(uuid.uuid4()) + '.jpg' with open(file_name,'wb') as f: f.write(img_response.content)
備註:
# 找到第一個a標籤
tag1
=
soup.find(name
=
'a'
)
# 找到全部的a標籤
tag2
=
soup.find_all(name
=
'a'
)
# 找到id=link2的標籤
tag3
=
soup.select(
'#link2'
)
#!/usr/bin/env python # -*- coding: utf8 -*- # __Author: "Skiler Hao" # date: 2017/5/10 11:06 import requests from bs4 import BeautifulSoup # 第一次請求 first_request_response = requests.get( url = 'http://dig.chouti.com/', ) # 獲取第一次登陸獲取的cookie內容 firstget_cookie_dict = first_request_response.cookies.get_dict() # 登陸POST請求 post_dict = { 'phone': '8618811*****', #86+手機號碼 'password': '******', #密碼 'oneMonth': 1 } # 發送請求,攜帶cookie和數據 login_response = requests.post( url = 'http://dig.chouti.com/login', data = post_dict, cookies= firstget_cookie_dict ) # 點贊請求 dianzan_response = requests.post( url = 'http://dig.chouti.com/link/vote?linksId=11832246', cookies= firstget_cookie_dict ) print(dianzan_response.text) # 取消點贊 cancel_dianzan_response = requests.post( url = 'http://dig.chouti.com/vote/cancel/vote.do', cookies= firstget_cookie_dict, data={'linksId':11832246} ) print(cancel_dianzan_response.text) # 獲取我的信息 get_person_info_resonse = requests.get( url = 'http://dig.chouti.com/profile', cookies= firstget_cookie_dict, ) # 按照某種encoding方式編碼 get_person_info_resonse.encoding = get_person_info_resonse.apparent_encoding # 將其內容放入BS中進行解析 person_info_site = BeautifulSoup(get_person_info_resonse.text,features='html.parser') # 找到以後能夠作任何處理,獲取配置中的nickname nickname_tag = person_info_site.find(id='nick') nickname = person_info_site.find(id='nick').attrs.get('value') print('暱稱:',nickname) # 更新本身在抽屜上的我的信息 personal_info = { 'jid': 'cdu_49017916793', 'nick': '努力哥', 'imgUrl': 'http://img2.chouti.com/CHOUTI_90A38B32473A49B7B26A49F46B34268C_W585H359=C60x60.png', # http://img2.chouti.com/CHOUTI_BAE7F736FE7B48E49D1CEE459020F3B0_W390H390=48x48.jpg 'sex': True, 'proveName': '北京', 'cityName': '澳門', 'sign': '黑hi呃呃哈發到付' } update_person_info_resonse = requests.post( url = 'http://dig.chouti.com/profile/update', cookies= firstget_cookie_dict, data=personal_info ) print(update_person_info_resonse.text) #########################Session方式登陸抽屜######################### session = requests.Session() # 先登錄一下抽屜網 i1 = session.get( url='http://dig.chouti.com/' ) # 模擬抽屜登陸 login_post_dict = { 'phone': '86188116*****', #86+手機號碼 'password': '******', #密碼 'oneMonth': 1 } i2 = session.post( url='http://dig.chouti.com/login', data=login_post_dict, )
#!/usr/bin/env python # -*- coding: utf8 -*- # date: 2017/5/10 16:32 import requests from bs4 import BeautifulSoup # GitHub是基於authenticity_token,具備預防csrf_token的功能 # 首先訪問頁面,獲取頁面上的authenticity_token i1 = requests.get('https://github.com/login') # print(i1.content) login_page_res = BeautifulSoup(i1.content,features='lxml') authenticity_token = login_page_res.find(name='input',attrs={'name':'authenticity_token'}).attrs.get('value') cookies1 = i1.cookies.get_dict() # print(authenticity_token) form_data = { 'commit': 'Sign in', 'utf8': '✓', 'authenticity_token': authenticity_token, 'login': '*****', 'password': '******', } # 將數據封裝在post請求中進行登陸,並且要加上cookie login_res = requests.post( url='https://github.com/session', data=form_data, cookies=cookies1 ) # print(login_res.text) # 拿到頁面中的本身的項目列表 login_page_res = BeautifulSoup(login_res.content,features='lxml') list_info = login_page_res.select("span .repo") for i in list_info: print(i.text) cookies1 = i1.cookies.get_dict()
四、自動登陸cnblog
博客園站用了一個rsa算法的加密模塊,因此安裝加密模塊。才能驗證登陸。
pip3 install rsa
代碼:
#!/usr/bin/env python # -*- coding: utf8 -*- # date: 2017/5/11 10:51 import re import json import base64 import rsa import requests from bs4 import BeautifulSoup # 負責模仿前端js模塊對帳號和密碼加密 def js_enrypt(text): # 先從博客園拿到public key public_key = 'MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCp0wHYbg/NOPO3nzMD3dndwS0MccuMeXCHgVlGOoYyFwLdS24Im2e7YyhB0wrUsyYf0/nhzCzBK8ZC9eCWqd0aHbdgOQT6CuFQBMjbyGYvlVYU2ZP7kG9Ft6YV6oc9ambuO7nPZh+bvXH0zDKfi02prknrScAKC0XhadTHT3Al0QIDAQAB' # 將拿到的一串字符,轉換成64進制 der = base64.standard_b64decode(public_key) # 再將其轉換成數字,做爲公鑰加載 pk = rsa.PublicKey.load_pkcs1_openssl_der(der) # 運用公鑰對傳進來的文字進行加密 v1 = rsa.encrypt(bytes(text,'utf8'),pk) # 對加密後的內容進行解碼 value = base64.encodebytes(v1).replace(b'\n',b'') value = value.decode('utf8') # 將其返回 return value session = requests.Session() # 寫個錯誤的用戶名和密碼,提交一下。就找到提交數據 post_data = { 'input1': js_enrypt('******'), 'input2': js_enrypt('******'), 'remember': True } # 發送一次請求,獲取ajax發送post時要發送的VerificationToken,須要將其放在請求頭部 login_page = session.get( url='https://passport.cnblogs.com/user/signin', ) VerificationToken = re.compile("'VerificationToken': '(.*)'") v = re.search(VerificationToken,login_page.text) VerificationToken = v.group(1) # 發送請求,注意將數據json序列化,由於Accept:application/json login_post_res = session.post( url='https://passport.cnblogs.com/user/signin', data=json.dumps(post_data), headers={ 'VerificationToken': VerificationToken, 'X-Requested-With': 'XMLHttpRequest', 'Content-Type': 'application/json; charset=UTF-8' } ) # 登陸帳號設置頁 setting_page = session.get( url='https://home.cnblogs.com/set/account/', ) soup = BeautifulSoup(setting_page.content,features='lxml') name = soup.select_one('#loginName_display_block div').get_text().strip() print('你的帳號名爲:',name)
五、自動登陸知乎
#!/usr/bin/env python # -*- coding: utf8 -*- import requests from bs4 import BeautifulSoup session = requests.Session() # 知乎會查看你的是否有用戶客戶端信息,沒有不會讓爬的 signin_page = session.get( url='https://www.zhihu.com/#signin', headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) # 拿到頁面的_xrf爲了防止csrf攻擊,post數據的時候須要提供 signin_page_tag = BeautifulSoup(signin_page.content,features='lxml') xsrf_code = signin_page_tag.find('input',attrs={'name':'_xsrf'}).attrs.get('value') # 從知乎服務器獲取驗證碼照片,發送請求POST,發現須要傳入如下三個參數 # r:1494416**** # type:login # lang:cn import time current_time = time.time() yanzhengma = session.get( url='https://www.zhihu.com/captcha.gif', params={ 'r': current_time, 'type': 'login', # 'lang': 'en' # 使用不一樣的語言,cn最爲複雜,不加的話,最容易識別,en爲立體的英文也很差識別 }, headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) # 將從服務器收到的驗證碼寫入文件,能夠查看啦 with open('zhihu.gif', 'wb') as f: f.write(yanzhengma.content) captcha = input("請打開照片查看驗證碼:") form_data = { '_xsrf': xsrf_code, 'password': '********', 'captcha': captcha, # 'captcha': '{"img_size": [200, 44], "input_points": [[40.2, 34.2], [156.2, 28.2], [138.2, 24.2]]}', # 'captcha_type': 'cn', # 若是爲中文的驗證碼比較複雜 'phone_num': '***********', #填手機號碼登陸 # 'email':"sddasd@123.com" # 郵箱登陸的方式 } login_response = session.post( url='https://www.zhihu.com/login/phone_num', #前端會根據你的數據類型選擇用郵箱或者手機號碼登陸 # url='https://www.zhihu.com/login/phone_num' data=form_data, headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) index_page = session.get( url='https://www.zhihu.com/', headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) index_page_tag = BeautifulSoup(index_page.content,features='lxml') print(index_page_tag)
運行程序後,輸入驗證碼。登陸成功後,搜索用戶名稱,能找到我多個相同的用戶名稱,就說明登陸成功。