psutil--跨平臺的進程管理

 

Python處理Windows進程

psutil(Python system and process utilities)是一個跨平臺的進程管理和系統工具的python庫,
能夠處理系統CPU,memory,disks,network等信息。主要用於系統資源的監控,分析,以及對進程
進行必定的管理。經過psutil能夠實現如ps,top,lsof,netstat,ifconfig, who,df,kill,free,
nice,ionice,iostat,iotop,uptime,pidof,tty,taskset,pmap。在Linux,windows,OSX,freebsd
Sun Solaris等系統上工做,最新的版本python是要高於2.6(Python 2.4 Python2.5 能夠用2.1.3版本)python

系統相關的功能

CPU相關

psutil.cpu_times(precpu=False)
返回系統CPU運行時間的元組,時間爲秒。linux

  • user
    • system
    • nice (UNIX)
    • iowait (Linux)
    • irq (Linux, FreeBSD)
    • softirq (Linux)
    • steal (Linux 2.6.11+)
    • guest (Linux 2.6.24+)
    • guest_nice (Linux 3.2.0+ )

psutil.cpu_percent(interval=None, percpu=False)
返回一個浮點書,表明當前cpu的利用率的百分比,包括sy+user. 當interval爲0或者None時,表示的是interval時間內的sys的利用率。
當percpu爲True返回是每個cpu的利用率。ios

psutil.cpu_times_percent(interval=None, percpu=False)git

psutil.cpu_count(logical=True)github

Memory

psutil.virtual_memory()express

返回一個內存信息的元組,大小爲字節windows

total: 內存的總大小.
available: 能夠用來的分配的內存,不一樣系統計算方式不一樣; Linux下的計算公式:free+ buffers + cached
percent: 已經用掉內存的百分比 (total - available) / total 100.
used: 已經用掉內存大小,不一樣系統計算方式不一樣
*free:
 空閒未被分配的內存,Linux下不包括buffers和cached緩存

Platform-specific fields:安全

active: (UNIX): 最近使用內存和正在使用內存。
inactive: (UNIX): 已經分配可是沒有使用的內存
buffers: (Linux, BSD): 緩存,linux下的Buffers
cached:(Linux, BSD): 緩存,Linux下的cached.
wired: (BSD, OSX): 一直存在於內存中的部分,不會被移除
shared: (BSD): 緩存網絡

內存總大小不等於Used+available,在windows系統可用內存和空閒內存是用一個。具體的能夠examples/meminfo.py

psutil.swap_memory()
返回系統的swap信息

total: swap的總大小 單位爲字節
used: 已用的swap大小 bytes
free: 空閒的swap大小 bytes
percent: 已用swap的百分比
sin: 從磁盤調入是swap的大小
sout: 從swap調出到disk的大小

sin, sout在windows沒有意義。

Disks

psutil.disk_partitions(all=False)
返回全部掛載的分區的信息的列表,列表中的每一項相似於df命令的格式輸出,包括分區,掛載點,文件系統格式,掛載參數等,會忽略掉/dev/shm,/proc/filesystem等,windows上分區格式 "removable", "fixed", "remote", "cdrom", "unmounted" or "ramdisk"。

>>>
>>> import psutil
>>> psutil.disk_partitions()
[sdiskpart(device='/dev/sda3', mountpoint='/', fstype='ext4', opts='rw,errors=remount-ro'),
 sdiskpart(device='/dev/sda7', mountpoint='/home', fstype='ext4', opts='rw')]

psutil.disk_usage(path)
返回硬盤,分區或者目錄的使用狀況,單位字節
若是不存在會報「OSError」錯誤。

>>>
>>> import psutil
>>> psutil.disk_usage('/')
sdiskusage(total=21378641920, used=4809781248, free=15482871808, percent=22.5)

psutil.disk_io_counters(perdisk=False)
返回當前磁盤的io狀況

read_count: number of reads
write_count: number of writes
read_bytes: number of bytes read
write_bytes: number of bytes written
read_time: time spent reading from disk (in milliseconds)
write_time: time spent writing to disk (in milliseconds)

If perdisk is True return the same information for every physical disk installed on the system as a dictionary with partition names as the keys and the namedutuple described above as the values. See examples/iotop.py for an example application.

>>>
>>> import psutil
>>> psutil.disk_io_counters()
sdiskio(read_count=8141, write_count=2431, read_bytes=290203, write_bytes=537676, read_time=5868, write_time=94922)
>>>
>>> psutil.disk_io_counters(perdisk=True)
{'sda1': sdiskio(read_count=920, write_count=1, read_bytes=2933248, write_bytes=512, read_time=6016, write_time=4),
 'sda2': sdiskio(read_count=18707, write_count=8830, read_bytes=6060, write_bytes=3443, read_time=24585, write_time=1572),
 'sdb1': sdiskio(read_count=161, write_count=0, read_bytes=786432, write_bytes=0, read_time=44, write_time=0)}

Network

psutil.net_io_counters(pernic=False)
返回整個系統的網絡信息

bytes_sent: 發送的字節數
bytes_recv: 接收的字節數
packets_sent: 發送到數據包的個數
packets_recv: 接受的數據包的個數
errin:
errout: 發送數據包錯誤的總數
dropin: 接收時丟棄的數據包的總數
dropout: 發送時丟棄的數據包的總數(OSX和BSD系統老是0)

若是 pernic值爲True,會顯示具體各個網卡的信息。

>>>
>>> import psutil
>>> psutil.net_io_counters()
snetio(bytes_sent=14508483, bytes_recv=62749361, packets_sent=84311, packets_recv=94888, errin=0, errout=0, dropin=0, dropout=0)
>>>
>>> psutil.net_io_counters(pernic=True)
{'lo': snetio(bytes_sent=547971, bytes_recv=547971, packets_sent=5075, packets_recv=5075, errin=0, errout=0, dropin=0, dropout=0),
'wlan0': snetio(bytes_sent=13921765, bytes_recv=62162574, packets_sent=79097, packets_recv=89648, errin=0, errout=0, dropin=0, dropout=0)}

psutil.net_connections(kind='inet')
返回系統的整個socket鏈接的信息,能夠選擇查看哪些類型的鏈接信息,相似於netstat命令

fd:
family: the address family, either AF_INET, AF_INET6 or AF_UNIX.
type: the address type, either SOCK_STREAM or SOCK_DGRAM.
laddr: the local address as a (ip, port) tuple or a path in case of AF_UNIX sockets.
raddr: the remote address as a (ip, port) tuple or an absolute path in case of UNIX sockets. When the remote endpoint is not connected you’ll get an empty tuple (AF_INET*) or None (AF_UNIX). On Linux AF_UNIX sockets will always have this set to None. status: represents the status of a TCP connection. The return value is one of the psutil.CONN_* constants (a string). For UDP and UNIX sockets this is always going to be psutil.CONN_NONE.
pid: the PID of the process which opened the socket, if retrievable, else None. On some platforms (e.g. Linux) the availability of this field **changes depending on process privileges (root is needed).

參數kind的類型:
「inet」 IPv4 and IPv6
「inet4」 IPv4
「inet6」 IPv6
「tcp」 TCP
「tcp4」 TCP over IPv4
「tcp6」 TCP over IPv6
「udp」 UDP
「udp4」 UDP over IPv4
「udp6」 UDP over IPv6
「unix」 UNIX socket (both UDP and TCP protocols)
「all」 the sum of all the possible families and protocols

>>>
>>> import psutil
>>> psutil.net_connections()
[pconn(fd=115, family=2, type=1, laddr=('10.0.0.1', 48776), raddr=('93.186.135.91', 80), status='ESTABLISHED', pid=1254),
 pconn(fd=117, family=2, type=1, laddr=('10.0.0.1', 43761), raddr=('72.14.234.100', 80), status='CLOSING', pid=2987),
 pconn(fd=-1, family=2, type=1, laddr=('10.0.0.1', 60759), raddr=('72.14.234.104', 80), status='ESTABLISHED', pid=None),
 pconn(fd=-1, family=2, type=1, laddr=('10.0.0.1', 51314), raddr=('72.14.234.83', 443), status='SYN_SENT', pid=None)
 ...]

Other system info

psutil.users()
返回當前系統用戶登陸信息

user: 用戶的名稱
terminal: 運行終端,tty仍是pts等
host: 登陸的IP
started: 登陸了多長時間

>>>
>>> import psutil
>>> psutil.users()
[suser(name='giampaolo', terminal='pts/2', host='localhost', started=1340737536.0),
 suser(name='giampaolo', terminal='pts/3', host='localhost', started=1340737792.0)]

psutil.boot_time()
返回當前的時間

>>>
>>> import psutil, datetime
>>> psutil.boot_time()
1389563460.0
>>> datetime.datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S")
'2014-01-12 22:51:00'

Processes

Functions

psutil.pids()
返回當前運行的進程pid列表

psutil.pid_exists(pid)
是否存在次pid,快速的驗證方式pid in psutil.pids()

psutil.process_iter()
返回一個包含Process對象的迭代器。每個對象只建立一次,建立後緩存起來。當一個進程更新時,會更新緩存。遍歷全部進程首選psutil.pids().迭代器排序是根據pid。

import psutil

for proc in psutil.process_iter():
    try:
        pinfo = proc.as_dict(attrs=['pid', 'name'])
    except psutil.NoSuchProcess:
        pass
    else:
        print(pinfo)

psutil.wait_procs(procs, timeout=None, callback=None)

Convenience function which waits for a list of Process instances to terminate. Return a (gone, alive) tuple indicating which processes are gone and which ones are still alive. The gone ones will have a new returncode attribute indicating process exit status (it may be None). callback is a function which gets called every time a process terminates (a Process instance is passed as callback argument). Function will return as soon as all processes terminate or when timeout occurs. Tipical use case is:

send SIGTERM to a list of processes
give them some time to terminate
send SIGKILL to those ones which are still alive

Example:

import psutil

def on_terminate(proc):
    print("process {} terminated".format(proc))

procs = [...]  # a list of Process instances
for p in procs:
    p.terminate()
gone, alive = wait_procs(procs, timeout=3, callback=on_terminate)
for p in alive:
    p.kill()

Exceptions

class psutil.Error
基礎異常,psutil的其餘異常都繼承這個

class psutil.NoSuchProcess(pid, name=None, msg=None)
當進程不在進程列表中,或者進程不存在時觸發。

class psutil.AccessDenied(pid=None, name=None, msg=None)
沒有權限時,被觸發

class psutil.TimeoutExpired(seconds, pid=None, name=None, msg=None)
當Process.wait() 超時,而且Process 一直在運行時.

psutil

標籤(空格分隔): Python

Process class

class psutil.Process(pid=None)
Process類是一個帶有pid的進程。若是沒有指定pid,則默認的進程爲os.getpid()所得進程。Process會觸發NoSuchProcess(當進程不存在時)和AccessDenied異常,

注意

Process是經過pid綁定的。若是在一個Process實例,在psutil運行中pid進程死掉,而
這個pid又綁定給了別的新的進程。爲了保證Process的安全性能夠經過pid+createion time
方式來確認進程是不是同一個。

pid
進程的PID

ppid()
父進程pid. On Windows the return value is cached after first call.

name()
進程名.

exe()
進程運行命令的絕對路徑。

cmdline()
The command line this process has been called with.

create_time()
進程建立時間

>>>
>>> import psutil, datetime
>>> p = psutil.Process()
>>> p.create_time()
1307289803.47
>>> datetime.datetime.fromtimestamp(p.create_time()).strftime("%Y-%m-%d %H:%M:%S")
'2011-03-05 18:03:52'

as_dict(attrs=None, ad_value=None)
返回進程信息的哈希字典的實用方法,attrs指定的值必須是Process的屬性值,例如(['cpu_times','name'])

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.as_dict(attrs=['pid', 'name', 'username'])
{'username': 'giampaolo', 'pid': 12366, 'name': 'python'}

parent()
返回父進程,若是不存在父進程,則返回None。

status()
進程當前運行狀態,string形式。

cwd()
進程運行的所在的目錄

username()
哪一個用戶下運行的進程

uids()
返回real=uid,effective,saved用戶的uid

Availability: UNIX

gids()

Availability: UNIX

terminal()
The terminal associated with this process, if any, else None. This is similar to 「tty」 command but can be used for every process PID.

Availability: UNIX

nice(value=None)
獲取或者設置進程的nice值,

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.nice(10)  # set
>>> p.nice()  # get
10
>>>

在windows系統上,只能經過GetProrityClassSetPriorityClasspsutil.*_PRIORITY_CLASS包含的值來設定

>>>
>>> p.nice(psutil.HIGH_PRIORITY_CLASS)

ionice(ioclass=None, value=None)
獲取或者設置進程I/O的優先級。Linux上的ioclass的值psutil.IOPRO_CLASS_*值在0-7,windows 2 爲正常,1爲優先級低,0爲很是低。

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.ionice(psutil.IOPRIO_CLASS_IDLE)  # set
>>> p.ionice()  # get
pionice(ioclass=3, value=0)
>>>

rlimit(resource, limits=None)
Get or set process resource limits (see man prlimit). resource is one of the psutil.RLIMIT_* constants. limits is a (soft, hard) tuple. This is the same as resource.getrlimit() and resource.setrlimit() but can be used for every process PID and only on Linux. Example:

>>>
>>> import psutil
>>> p = psutil.Process()
>>> # process may open no more than 128 file descriptors
>>> p.rlimit(psutil.RLIMIT_NOFILE, (128, 128))
>>> # process may create files no bigger than 1024 bytes
>>> p.rlimit(psutil.RLIMIT_FSIZE, (1024, 1024))
>>> # get
>>> p.rlimit(psutil.RLIMIT_FSIZE)
(1024, 1024)
>>>

Availability: Linux

io_counters()
返回這個進程的IO狀況

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.io_counters()
pio(read_count=454556, write_count=3456, read_bytes=110592, write_bytes=0)

Availability: all platforms except OSX

num_ctx_switches()
The number voluntary and involuntary context switches performed by this process.

num_fds()
The number of file descriptors used by this process.

Availability: UNIX

num_handles()
The number of handles used by this process.

Availability: Windows

num_threads()
The number of threads currently used by this process.

threads()
Return threads opened by process as a list of namedtuples including thread id and thread CPU times (user/system).

cpu_times()
Return a tuple whose values are process CPU user and system times which means the amount of time expressed in seconds that a process has spent in user / system mode. This is similar to os.times() but can be used for every process PID.

cpu_percent(interval=None)
Return a float representing the process CPU utilization as a percentage. When interval is > 0.0 compares process times to system CPU times elapsed before and after the interval (blocking). When interval is 0.0 or None compares process times to system CPU times elapsed since last call, returning immediately. That means the first time this is called it will return a meaningless 0.0 value which you are supposed to ignore. In this case is recommended for accuracy that this function be called a second time with at least 0.1 seconds between calls. Example:

>>>
>>> import psutil
>>> p = psutil.Process()
>>>
>>> # blocking
>>> p.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> p.cpu_percent(interval=None)
2.9
>>>

Note a percentage > 100 is legitimate as it can result from a process with multiple threads running on different CPU cores.
Warning the first time this method is called with interval = 0.0 or None it will return a meaningless 0.0 value which you are supposed to ignore.
cpu_affinity(cpus=None)
Get or set process current CPU affinity. CPU affinity consists in telling the OS to run a certain process on a limited set of CPUs only. The number of eligible CPUs can be obtained with list(range(psutil.cpu_count())).

>>>
>>> import psutil
>>> psutil.cpu_count()
4
>>> p = psutil.Process()
>>> p.cpu_affinity()  # get
[0, 1, 2, 3]
>>> p.cpu_affinity([0])  # set; from now on, process will run on CPU #0 only
>>> p.cpu_affinity()
[0]
>>>
>>> # reset affinity against all CPUs
>>> all_cpus = list(range(psutil.cpu_count()))
>>> p.cpu_affinity(all_cpus)
>>>

Availability: Linux, Windows, BSD

Changed in version 2.2.0: added support for FreeBSD

memory_info()
Return a tuple representing RSS (Resident Set Size) and VMS (Virtual Memory Size) in bytes. On UNIX rss and vms are the same values shown by ps. On Windows rss and vms refer to 「Mem Usage」 and 「VM Size」 columns of taskmgr.exe. For more detailed memory stats use memory_info_ex().

memory_info_ex()
Return a namedtuple with variable fields depending on the platform representing extended memory information about the process. All numbers are expressed in bytes.

Linux OSX BSD SunOS Windows
rss rss rss rss num_page_faults
vms vms vms vms peak_wset
shared pfaults text   wset
text pageins data   peak_paged_pool
lib   stack   paged_pool
data       peak_nonpaged_pool
dirty       nonpaged_pool
        pagefile
        peak_pagefile
        private

Windows metrics are extracted from PROCESS_MEMORY_COUNTERS_EX structure. Example on Linux:

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_info_ex()
pextmem(rss=15491072, vms=84025344, shared=5206016, text=2555904, lib=0, data=9891840, dirty=0)

memory_percent()
Compare physical system memory to process resident memory (RSS) and calculate process memory utilization as a percentage.

memory_maps(grouped=True)
Return process’s mapped memory regions as a list of nameduples whose fields are variable depending on the platform. As such, portable applications should rely on namedtuple’s path and rss fields only. This method is useful to obtain a detailed representation of process memory usage as explained here. If grouped is True the mapped regions with the same path are grouped together and the different memory fields are summed. If grouped is False every mapped region is shown as a single entity and the namedtuple will also include the mapped region’s address space (addr) and permission set (perms). See examples/pmap.py for an example application.

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_maps()
[pmmap_grouped(path='/lib/x8664-linux-gnu/libutil-2.15.so', rss=16384, anonymous=8192, swap=0),
 pmmap_grouped(path='/lib/x8664-linux-gnu/libc-2.15.so', rss=6384, anonymous=15, swap=0),
 pmmap_grouped(path='/lib/x8664-linux-gnu/libcrypto.so.0.1', rss=34124, anonymous=1245, swap=0),
 pmmap_grouped(path='[heap]', rss=54653, anonymous=8192, swap=0),
 pmmap_grouped(path='[stack]', rss=1542, anonymous=166, swap=0),
 ...]
>>>

children(recursive=False)
Return the children of this process as a list of Process objects, pre-emptively checking whether PID has been reused. If recursive is True return all the parent descendants. Example assuming A == this process:

A ─┐

├─ B (child) ─┐
│ └─ X (grandchild) ─┐
│ └─ Y (great grandchild)
├─ C (child)
└─ D (child)

>>> p.children()
B, C, D
>>> p.children(recursive=True)
B, X, Y, C, D

Note that in the example above if process X disappears process Y won’t be returned either as the reference to process A is lost.

open_files()
Return regular files opened by process as a list of namedtuples including the absolute file name and the file descriptor number (on Windows this is always -1). Example:

>>>
>>> import psutil
>>> f = open('file.ext', 'w')
>>> p = psutil.Process()
>>> p.open_files()
[popenfile(path='/home/giampaolo/svn/psutil/file.ext', fd=3)]

connections(kind="inet")
Return socket connections opened by process as a list of namedutples. To get system-wide connections use psutil.net_connections(). Every namedtuple provides 6 attributes:

fd: the socket file descriptor. This can be passed to socket.fromfd() to obtain a usable socket object. This is only available on UNIX; on Windows -1 is always returned.
family: the address family, either AF_INET, AF_INET6 or AF_UNIX.
type: the address type, either SOCK_STREAM or SOCK_DGRAM.
laddr: the local address as a (ip, port) tuple or a path in case of AF_UNIX sockets.
raddr: the remote address as a (ip, port) tuple or an absolute path in case of UNIX sockets. When the remote endpoint is not connected you’ll get an empty tuple (AF_INET) or None (AF_UNIX). On Linux AF_UNIX sockets will always have this set to None.
status: represents the status of a TCP connection. The return value is one of the psutil.CONN_* constants. For UDP and UNIX sockets this is always going to be psutil.CONN_NONE.

The kind parameter is a string which filters for connections that fit the following criteria:

Kind value Connections using
「inet」 IPv4 and IPv6
「inet4」 IPv4
「inet6」 IPv6
「tcp」 TCP
「tcp4」 TCP over IPv4
「tcp6」 TCP over IPv6
「udp」 UDP
「udp4」 UDP over IPv4
「udp6」 UDP over IPv6
「unix」 UNIX socket (both UDP and TCP protocols)
「all」 the sum of all the possible families and protocols

Example:

>>>
>>> import psutil
>>> p = psutil.Process(1694)
>>> p.name()
'firefox'
>>> p.connections()
[pconn(fd=115, family=2, type=1, laddr=('10.0.0.1', 48776), raddr=('93.186.135.91', 80), status='ESTABLISHED'),
 pconn(fd=117, family=2, type=1, laddr=('10.0.0.1', 43761), raddr=('72.14.234.100', 80), status='CLOSING'),
 pconn(fd=119, family=2, type=1, laddr=('10.0.0.1', 60759), raddr=('72.14.234.104', 80), status='ESTABLISHED'),
 pconn(fd=123, family=2, type=1, laddr=('10.0.0.1', 51314), raddr=('72.14.234.83', 443), status='SYN_SENT')]

is_running()
判斷進程是否存活
Return whether the current process is running in the current process list. This is reliable also in case the process is gone and its PID reused by another process, therefore it must be preferred over doing psutil.pid_exists(p.pid).

Note this will return True also if the process is a zombie (p.status() == psutil.STATUS_ZOMBIE).
send_signal(signal)
發送新號給進程
Send a signal to process (see signal module constants) pre-emptively checking whether PID has been reused. This is the same as os.kill(pid, sig). On Windows only SIGTERM is valid and is treated as an alias for kill().

suspend()
Suspend process execution with SIGSTOP signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGSTOP). On Windows this is done by suspending all process threads execution.

resume()
Resume process execution with SIGCONT signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGCONT). On Windows this is done by resuming all process threads execution.

terminate()
Terminate the process with SIGTERM signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGTERM). On Windows this is an alias for kill().

kill()
Kill the current process by using SIGKILL signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGKILL). On Windows this is done by using TerminateProcess.

wait(timeout=None)
Wait for process termination and if the process is a children of the current one also return the exit code, else None. On Windows there’s no such limitation (exit code is always returned). If the process is already terminated immediately return None instead of raising NoSuchProcess. If timeout is specified and process is still alive raise TimeoutExpired exception. It can also be used in a non-blocking fashion by specifying timeout=0 in which case it will either return immediately or raise TimeoutExpired. To wait for multiple processes use psutil.wait_procs().

Popen class

class psutil.Popen(*args, **kwargs)
A more convenient interface to stdlib subprocess.Popen. It starts a sub process and deals with it exactly as when using subprocess.Popen but in addition it also provides all the methods of psutil.Process class in a single interface. For method names common to both classes such as send_signal(), terminate() and kill() psutil.Process implementation takes precedence. For a complete documentation refer to subprocess module documentation.

Note Unlike subprocess.Popen this class pre-emptively checks wheter PID has been reused on send_signal(), terminate() and kill() so that you don’t accidentally terminate another process, fixing http://bugs.python.org/issue6973.

>>>
>>> import psutil
>>> from subprocess import PIPE
>>>
>>> p = psutil.Popen(["/usr/bin/python", "-c", "print('hello')"], stdout=PIPE)
>>> p.name()
'python'
>>> p.username()
'giampaolo'
>>> p.communicate()
('hello\n', None)
>>> p.wait(timeout=2)
0
>>>

Constants

psutil.STATUS_RUNNING
psutil.STATUS_SLEEPING
psutil.STATUS_DISK_SLEEP
psutil.STATUS_STOPPED
psutil.STATUS_TRACING_STOP
psutil.STATUS_ZOMBIE
psutil.STATUS_DEAD
psutil.STATUS_WAKE_KILL
psutil.STATUS_WAKING
psutil.STATUS_IDLE
psutil.STATUS_LOCKED
psutil.STATUS_WAITING

A set of strings representing the status of a process. Returned by psutil.Process.status().

psutil.CONN_ESTABLISHED
psutil.CONN_SYN_SENT
psutil.CONN_SYN_RECV
psutil.CONN_FIN_WAIT1
psutil.CONN_FIN_WAIT2
psutil.CONN_TIME_WAIT
psutil.CONN_CLOSE
psutil.CONN_CLOSE_WAIT
psutil.CONN_LAST_ACK
psutil.CONN_LISTEN
psutil.CONN_CLOSING
psutil.CONN_NONE
psutil.CONN_DELETE_TCB(Windows)
psutil.CONN_IDLE(Solaris)
psutil.CONN_BOUND(Solaris)

A set of strings representing the status of a TCP connection. Returned by psutil.Process.connections() (status field).

psutil.ABOVE_NORMAL_PRIORITY_CLASS
psutil.BELOW_NORMAL_PRIORITY_CLASS
psutil.HIGH_PRIORITY_CLASS
psutil.IDLE_PRIORITY_CLASS
psutil.NORMAL_PRIORITY_CLASS
psutil.REALTIME_PRIORITY_CLASS
A set of integers representing the priority of a process on Windows (see MSDN documentation). They can be used in conjunction with psutil.Process.nice() to get or set process priority.

Availability: Windows

psutil.IOPRIO_CLASS_NONE
psutil.IOPRIO_CLASS_RT
psutil.IOPRIO_CLASS_BE
psutil.IOPRIO_CLASS_IDLE
A set of integers representing the I/O priority of a process on Linux. They can be used in conjunction with psutil.Process.ionice() to get or set process I/O priority. IOPRIO_CLASS_NONE and IOPRIO_CLASS_BE (best effort) is the default for any process that hasn’t set a specific I/O priority. IOPRIO_CLASS_RT (real time) means the process is given first access to the disk, regardless of what else is going on in the system. IOPRIO_CLASS_IDLE means the process will get I/O time when no-one else needs the disk. For further information refer to manuals of ionice command line utility or ioprio_get system call.

Availability: Linux

psutil.RLIMIT_INFINITY
psutil.RLIMIT_AS
psutil.RLIMIT_CORE
psutil.RLIMIT_CPU
psutil.RLIMIT_DATA
psutil.RLIMIT_FSIZE
psutil.RLIMIT_LOCKS
psutil.RLIMIT_MEMLOCK
psutil.RLIMIT_MSGQUEUE
psutil.RLIMIT_NICE
psutil.RLIMIT_NOFILE
psutil.RLIMIT_NPROC
psutil.RLIMIT_RSS
psutil.RLIMIT_RTPRIO
psutil.RLIMIT_RTTIME
psutil.RLIMIT_RTPRIO
psutil.RLIMIT_SIGPENDING
psutil.RLIMIT_STACK
Constants used for getting and setting process resource limits to be used in conjunction with psutil.Process.rlimit(). See man prlimit for futher information.

Availability: Linux

相關文章
相關標籤/搜索