SymPy庫經常使用函數

簡介

SymPy是一個符號計算的Python庫。它的目標是成爲一個全功能的計算機代數系統,同時保持代碼簡 潔、易於理解和擴展。它徹底由Python寫成,不依賴於外部庫。SymPy支持符號計算、高精度計算、模式匹配、繪圖、解方程、微積分、組合數學、離散 數學、幾何學、機率與統計、物理學等方面的功能。(來自維基百科的描述)html

更多內容請查看本人我的博客:https://huiyang865.github.io/2016/08/27/sympy/python

Sympy安裝方法

安裝命令:pip install sympylinux

基本數值類型

實數,有理數和整數

SymPy有三個內建的數值類型:實數,有理數和整數。有理數類用兩個整數來表示一個有理數。分子與分母,因此Rational(1,2)表明1/2,Rational(5,2)表明5/2,等等。git

>>>from sympy import *
>>>a = Rational(1,2)
>>>a
1/2
>>>a*2
1
>>>Rational(2)**50/Rational(10)**50
1/88817841970012523233890533447265625

當利用Python的整數計算時要注意一下,Python只會截取除法的整數部分:github

>>>1/2
0
>>>1.0/2
0.5

然而你能夠:算法

>>>from __future__ import division
>>>1/2 #doctest: +SKIP
0.5

正確的除法在python3k和isympy中這樣作,是標準的。express

特殊的常數

咱們也能夠有一些特殊的常數,像e和pi,它們會被看成符號去對待。(1+pi不會求得值,反而它會保持爲1+pi),例如:app

>>>pi**2
pi**2
>>>pi.evalf()
3.14159265358979
>>>(pi+exp(1)).evalf()
5.85987448204884

求表達式的浮點數-evalf()函數

正如你看到的,evalf()函數能夠用求出表達式的浮點數。
有一個無窮大的類型,被成爲oo:函數

>>>oo > 99999
True
>>>oo + 1
oo
If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as
>>> (1/x).evalf(subs={x: 3.0}, n=21)
0.333333333333333333333
rather than
>>> (1/x).subs({x: 3.0}).evalf(21)
0.333333333333333314830

Sympy基本使用

定義變量-Symbols函數

對比與其餘的計算機代數系統,在SymPy中要明確聲明符號變量:ui

>>> x = symbols('x')
>>> x + 1
x + 1
>>>x,y,z=symbols('x y z')
>>> crazy = symbols('unrelated')
>>> crazy + 1
unrelated + 1
>>> x = symbols('x')
>>> expr = x + 1
>>> x = 2
>>> print(expr)
x + 1
Changing x to 2 had no effect on expr. This is because x = 2 changes the Python variable x to 2, but has no effect on the SymPy Symbol x, which was what we used in creating expr.

變量替換subs函數

>>> x = symbols('x')
>>> expr = x + 1
>>> expr.subs(x, 2)
3
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y
>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
>>> (x**2 + x**4).subs(x**2, y)
y**2 + y
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
>>> limit(x**3 - 3*x, x, oo)
oo

調用方式:[subs(*args, **kwargs)]

代數

局部的代數式展開,使用apart(expr, x):

In [1]: 1/( (x+2)*(x+1) )
Out[1]:
       1
───────────────
(2 + x)*(1 + x)
In [2]: apart(1/( (x+2)*(x+1) ), x)
Out[2]:
  1       1
───── - ─────
1 + x   2 + x
In [3]: (x+1)/(x-1)
Out[3]:
-(1 + x)
────────
  1 - x
In [4]: apart((x+1)/(x-1), x)
Out[4]:
      2
1 - ─────
    1 - x

代數式的合併

(至關於展開的逆運算),使用together(expr, x):

In [7]: together(1/x + 1/y + 1/z)
Out[7]:
x*y + x*z + y*z
───────────────
    x*y*z
In [8]: together(apart((x+1)/(x-1), x), x)
Out[8]:
-1 - x
──────
1 - x
In [9]: together(apart(1/( (x+2)*(x+1) ), x), x)
Out[9]:
      1
───────────────
(2 + x)*(1 + x)

微積分

極限

在sympy中極限容易求出,它們遵循極限語法 limit(function, variable, point) ,因此計算x->0時f(x)的極限,即limit(f, x, 0):

>>>from sympy import *
>>>x=Symbol("x")
>>>limit(sin(x)/x, x, 0)
1
>>>limit(x, x, oo)
oo
>>>limit(1/x, x, oo)
0
>>>limit(x**x, x, 0)
1

有一些特殊的極限的例子,能夠閱讀文件test_demidovich.py

微分

能夠對任意SymPy表達式微分。diff(func, var)。例如:

>>>from sympy import *
>>>x = Symbol('x')
>>>diff(sin(x), x)
cos(x)
>>>diff(sin(2*x), x)
2*cos(2*x)
>>>diff(tan(x), x)
1 + tan(x)**2

能夠經過如下驗證:

>>>limit((tan(x+y)-tan(x))/y, y, 0)
1 + tan(x)**2

計算高階微分 diff(func, var, n) :

>>>diff(sin(2*x), x, 1)
2*cos(2*x)
>>>diff(sin(2*x), x, 2)
-4*sin(2*x)
>>>diff(sin(2*x), x, 3)
-8*cos(2*x)

級數展開

函數 series(var, point, order):

>>>from sympy import *
>>>x = Symbol('x')
>>>cos(x).series(x, 0, 10)
1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**10)
>>>(1/cos(x)).series(x, 0, 10)
1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + 277*x**8/8064 + O(x**10)

積分

SymPy支持不定積分,超越函數與特殊函數的定積分。SymPy有力的擴展Risch-Norman 算法和模型匹配算法。

>>>from sympy import *
>>>x, y = symbols('xy')

初等函數:

>>>integrate(6*x**5, x)
x**6
>>>integrate(sin(x), x)
-cos(x)
>>>integrate(log(x), x)
-x + x*log(x)
>>>integrate(2*x + sinh(x), x)
cosh(x) + x**2

特殊函數:

>>>integrate(exp(-x**2)*erf(x), x)
pi**(1/2)*erf(x)**2/4

定積分:

>>>integrate(x**3, (x, -1, 1))
0
>>integrate(sin(x), (x, 0, pi/2))
1
>>>integrate(cos(x), (x, -pi/2, pi/2))
2

一些廣義積分也能夠被支持:

>>>integrate(exp(-x), (x, 0, oo))
1
>>>integrate(log(x), (x, 0, 1))
-1

複數

>>>from sympy import Symbol, exp, I
>>>x = Symbol("x")
>>>exp(I*x).expand()
exp(I*x)
>>>exp(I*x).expand(complex=True)
I*exp(-im(x))*sin(re(x)) + cos(re(x))*exp(-im(x))
>>>x = Symbol("x", real=True)
>>>exp(I*x).expand(complex=True)
I*sin(x) + cos(x)

函數

三角函數::

In [1]: sin(x+y).expand(trig=True)
Out[1]: cos(x)*sin(y) + cos(y)*sin(x)
In [2]: cos(x+y).expand(trig=True)
Out[2]: cos(x)*cos(y) - sin(x)*sin(y)
In [3]: sin(I*x)
Out[3]: I*sinh(x)
In [4]: sinh(I*x)
Out[4]: I*sin(x)
In [5]: asinh(I)
Out[5]:
π*I
───
 2
In [6]: asinh(I*x)
Out[6]: I*asin(x)
In [15]: sin(x).series(x, 0, 10)
Out[15]:
     3     5     7       9
    x     x     x       x
x - ── + ─── - ──── + ────── + O(x**10)
    6    120   5040   362880
In [16]: sinh(x).series(x, 0, 10)
Out[16]:
     3     5     7       9
    x     x     x       x
x + ── + ─── + ──── + ────── + O(x**10)
    6    120   5040   362880
In [17]: asin(x).series(x, 0, 10)
Out[17]:
     3      5      7       9
    x    3*x    5*x    35*x
x + ── + ──── + ──── + ───── + O(x**10)
    6     40    112     1152
In [18]: asinh(x).series(x, 0, 10)
Out[18]:
     3      5      7       9
    x    3*x    5*x    35*x
x - ── + ──── - ──── + ───── + O(x**10)
    6     40    112     1152

球諧函數:

In [1]: from sympy.abc import theta, phi
In [2]: Ylm(1, 0, theta, phi)
Out[2]:
     ————
╲╱ 3 *cos(θ)
────────────
        ——
  2*╲╱ π
In [3]: Ylm(1, 1, theta, phi)
Out[3]:
    ——            I*φ
-╲╱ 6   *│sin(θ)│*ℯ
────────────────────
           ——
      4*╲╱ π
In [4]: Ylm(2, 1, theta, phi)
Out[4]:
   ———                  I*φ
-╲╱ 30  *│sin(θ)│*cos(θ)*ℯ
────────────────────────────
                ——
          4*╲╱ π

階乘和伽瑪函數:

In [1]: x = Symbol("x")
In [2]: y = Symbol("y", integer=True)
In [3]: factorial(x)
Out[3]: Γ(1 + x)
In [4]: factorial(y)
Out[4]: y!
In [5]: factorial(x).series(x, 0, 3)
Out[5]:
                    2           2    2  2
                   x *EulerGamma    π *x
1 - x*EulerGamma + ────────────── + ───── + O(x**3)
                         2            12

Zeta函數:

In [18]: zeta(4, x)
Out[18]: ζ(4, x)
In [19]: zeta(4, 1)
Out[19]:
  4
π
──
90
In [20]: zeta(4, 2)
Out[20]:
       4
     π
-1 + ──
     90
In [21]: zeta(4, 3)
Out[21]:
         4
  17   π
- ── + ──
  16   90

多項式

In [1]: chebyshevt(2, x)
Out[1]:
        2
-1 + 2*x
In [2]: chebyshevt(4, x)
Out[2]:
       2      4
1 - 8*x  + 8*x
In [3]: legendre(2, x)
Out[3]:
          2
       3*x
-1/2 + ────
       2
In [4]: legendre(8, x)
Out[4]:
          2         4         6         8
35   315*x    3465*x    3003*x    6435*x
─── - ────── + ─────── - ─────── + ───────
128     32        64        32       128
In [5]: assoc_legendre(2, 1, x)
Out[5]:
            —————
         ╱     2
-3*x*╲╱  1 - x
In [6]: assoc_legendre(2, 2, x)
Out[6]:
      2
3 - 3*x
In [7]: hermite(3, x)
Out[7]:
           3
-12*x + 8*x

微分方程

在isympy中:

In [4]: f(x).diff(x, x) + f(x)     #注意在使用輸入該命令以前,必定要聲明f=Function('f')
Out[4]:
  2
 d
─────(f(x)) + f(x)
dx dx
In [5]: dsolve(f(x).diff(x, x) + f(x), f(x))
Out[5]: C₁*sin(x) + C₂*cos(x)

代數方程

在isympy中:

In [7]: solve(x**4 - 1, x)
Out[7]: [i, 1, -1, -i]
In [8]: solve([x + 5*y - 2, -3*x + 6*y - 15], [x, y])
Out[8]: {y: 1, x: -3}

線性代數

矩陣

矩陣由矩陣類創立建:

>>>from sympy import Matrix
>>>Matrix([[1,0], [0,1]])
[1, 0]
[0, 1]

不僅是數值矩陣,亦可爲代數矩陣,即矩陣中存在符號:

>>>x = Symbol('x')
>>>y = Symbol('y')
>>>A = Matrix([[1,x], [y,1]])
>>>A
[1, x]
[y, 1]
>>>A**2
[1 + x*y,     2*x]
[    2*y, 1 + x*y]

關於矩陣更多的例子,請看線性代數教程。

係數匹配

使用 .match()方法,引用Wild類,來執行表達式的匹配。該方法會返回一個字典。

>>>from sympy import *
>>>x = Symbol('x')
>>>p = Wild('p')
>>>(5*x**2).match(p*x**2)
{p_: 5}
>>>q = Wild('q')
>>>(x**2).match(p*x**q)
{p_: 1, q_: 2}

若是匹配不成功,則返回None:

>>>print (x+1).match(p**x)
None

可使用Wild類的‘exclude’參數(排除參數),排除不須要和無心義的匹配結果,來保證結論中的顯示是惟一的:

>>>x = Symbol('x')
>>>p = Wild('p', exclude=[1,x])
>>>print (x+1).match(x+p) # 1 is excluded
None
>>>print (x+1).match(p+1) # x is excluded
None
>>>print (x+1).match(x+2+p) # -1 is not excluded
{p_: -1}

打印輸出

標準

str(expression)返回以下:

>>>from sympy import Integral
>>>from sympy.abc import x
>>>print x**2
x**2
>>>print 1/x
1/x
>>>print Integral(x**2, x)
Integral(x**2, x)

Pretty Printing

用pprint函數能夠輸出不錯的ascii藝術:

>>>from sympy import Integral, pprint
>>>from sympy.abc import x
>>>pprint(x**2) #doctest: +NORMALIZE_WHITESPACE
2
x
>>>pprint(1/x)
1
-
x
>>>pprint(Integral(x**2, x))
 /
|
|  2
| x  dx
|
/

[Pretty PrintingWiki]
提示:在python解釋器中,爲使pretty printing爲默認輸出,使用:

$ python
Python 2.5.2 (r252:60911, Jun 25 2008, 17:58:32)
[GCC 4.3.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from sympy import *
>>> import sys
>>> sys.displayhook = pprint
>>> var("x")
x
>>> x**3/3
3
x
--
3
>>> Integral(x**2, x) #doctest: +NORMALIZE_WHITESPACE
/
|
|  2
| x  dx
|
/

Python printing

>>>from sympy.printing.python import python
>>>from sympy import Integral
>>>from sympy.abc import x
>>>print python(x**2)
x = Symbol('x')
e = x**2
>>>print python(1/x)
x = Symbol('x')
e = 1/x
>>>print python(Integral(x**2, x))
x = Symbol('x')
e = Integral(x**2, x)

LaTeX printing

>>>from sympy import Integral, latex
>>>from sympy.abc import x
>>>latex(x**2)
$x^{2}$
>>>latex(1/x)
$\frac{1}{x}$
>>>latex(Integral(x**2, x))
$\int x^{2}\,dx$

MathML

>>>from sympy.printing.mathml import mathml
>>>from sympy import Integral, latex
>>>from sympy.abc import x
>>>print mathml(x**2)
<apply><power/><ci>x</ci><cn>2</cn></apply>
>>>print mathml(1/x)
<apply><power/><ci>x</ci><cn>-1</cn></apply>

Pyglet

>>>from sympy import Integral, preview
>>>from sympy.abc import x
>>>preview(Integral(x**2, x)) #doctest:+SKIP
註解

Isympy默認調用pprint,因此這就是爲何看到pretty printing爲默認的。

有一個打印的有效模塊,sympy.printing。用這個模塊實現其餘的打印:

  • pretty(expr), pretty_print(expr), pprint(expr): 分別返回或者輸出,,表達式的漂亮描述。這是相同
  • latex(expr), print_latex(expr):分別返回或者輸出,LaTex描寫的表達式
  • mathml(expr), print_mathml(expr):分別返回或者輸出,MathML描寫的表達式
  • print_gtk(expr): 表達式打印到Gtkmathview , 這是一個GTK小配件顯示MathML代碼。Gtkmathview程序是必須的。

相關連接

相關文章
相關標籤/搜索