很少說,直接上乾貨!html
1、自定義攔截器類型必須是:類全名$內部類名,其實就是內部類名稱
如:zhouls.bigdata.MySearchAndReplaceInterceptor$Builderjava
2、爲何這樣寫
至於爲何這樣寫:是由於Interceptor接口還有一個 公共的內部接口(Builder) ,因此自定義攔截器 要是實現 Builder接口,
也就是實現一個內部類(該內部類的主要做用是:獲取flume-conf.properties 自定義的 參數,並將參數傳遞給 自定義攔截器)
3、
本人知識有限,可能描述的不太清楚,可自行了解 java接口與內部類
node
因爲有時候內置的攔截器不夠用,因此須要針對特殊的業務需求自定義攔截器。
官方文檔中沒有發現自定義interceptor的步驟,可是能夠根據flume源碼參考內置的攔截器的代碼
flume-1.7/flume-ng-core/src/main/java/org/apache/flume/interceptor/***Iterceptor.javaandroid
不管,是flume的自帶攔截器,仍是,flume的自定義攔截器,我這篇博文呢,是想給你們,去規範和方便化!!!git
[hadoop@master app]$ rm -rf flume [hadoop@master app]$ ln -s flume-1.7.0/ flume [hadoop@master app]$ ll lrwxrwxrwx 1 hadoop hadoop 12 Jul 27 11:42 flume -> flume-1.7.0/ drwxrwxr-x 7 hadoop hadoop 4096 Apr 20 12:17 flume-1.6.0 drwxrwxr-x 7 hadoop hadoop 4096 Apr 20 12:00 flume-1.7.0
Host Interceptor的應用場景是,將同一主機或服務器上的數據flume在一塊兒。github
Regex Extractor Iterceptor的應用場景是,正則表達式
這裏,教你們一個很是實用的技巧,shell
[hadoop@master flume-1.7.0]$ pwd
/home/hadoop/app/flume-1.7.0
[hadoop@master flume-1.7.0]$ ll
total 148
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
-rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
-rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
-rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
-rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
-rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
-rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
-rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_HostInterceptor
[hadoop@master flume-1.7.0]$ ll
total 152
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
-rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 11:59 conf_HostInterceptor
-rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
-rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
-rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
-rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
-rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
-rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$
[hadoop@master flume-1.7.0]$ ll
total 152
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
-rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
-rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
-rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
-rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
-rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
-rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
-rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_RegexExtractorInterceptor
[hadoop@master flume-1.7.0]$ ll
total 156
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
-rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:03 conf_RegexExtractorInterceptor
-rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
-rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
-rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
-rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
-rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
-rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
-rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:03 conf_RegexExtractorInterceptor
-rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
-rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
-rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
-rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
-rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
-rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_SearchandReplaceInterceptor
[hadoop@master flume-1.7.0]$ ll
total 160
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
-rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:03 conf_RegexExtractorInterceptor
drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:04 conf_SearchandReplaceInterceptor
-rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
-rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
-rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
-rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
-rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
-rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$
你們,想必,很想問,爲何要這麼cp複製出來呢?如flume的如下3種重要的自帶攔截器???express
cp -r conf conf_HostInterceptor cp -r conf conf_SearchandReplaceInterceptor cp -r conf conf_RegexExtractorInterceptor
你想啊,若不復制的話,則咱們在使用時,則會不方便管理。尤爲是,見以下,共用同一個log4j.properties,日誌排查起來一點都不方便!!!apache
而,如今是
這樣作下來,就是很是的方便和正規。
同時,你們,還要以下更改下
[hadoop@master conf_HostInterceptor]$ pwd /home/hadoop/app/flume-1.7.0/conf_HostInterceptor [hadoop@master conf_HostInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:01 flume-conf.properties.template -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:01 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:01 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3107 Jul 27 12:01 log4j.properties [hadoop@master conf_HostInterceptor]$ mv flume-conf.properties.template flume-conf.properties [hadoop@master conf_HostInterceptor]$ vim log4j.properties
#flume.root.logger=DEBUG,console flume.root.logger=INFO,LOGFILE flume.log.dir=./logs flume.log.file=flume_HostInterceptor.log
同理
[hadoop@master conf_RegexExtractorInterceptor]$ pwd /home/hadoop/app/flume-1.7.0/conf_RegexExtractorInterceptor [hadoop@master conf_RegexExtractorInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:03 flume-conf.properties.template -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:03 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:03 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3107 Jul 27 12:03 log4j.properties [hadoop@master conf_RegexExtractorInterceptor]$ mv flume-conf.properties.template flume-conf.properties [hadoop@master conf_RegexExtractorInterceptor]$ vim log4j.properties
#flume.root.logger=DEBUG,console flume.root.logger=INFO,LOGFILE flume.log.dir=./logs flume.log.file=flume_RegexExtractorInterceptor.log
同理
[hadoop@master conf_SearchandReplaceInterceptor]$ pwd /home/hadoop/app/flume-1.7.0/conf_SearchandReplaceInterceptor [hadoop@master conf_SearchandReplaceInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:04 flume-conf.properties.template -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:04 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:04 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3107 Jul 27 12:04 log4j.properties [hadoop@master conf_SearchandReplaceInterceptor]$ mv flume-conf.properties.template flume-conf.properties [hadoop@master conf_SearchandReplaceInterceptor]$ vim log4j.properties
#flume.root.logger=DEBUG,console flume.root.logger=INFO,LOGFILE flume.log.dir=./logs flume.log.file=flume_SearchandReplaceInterceptor.log
Host Interceptor
conf_HostInterceptor的flume-conf.properties
agent1.sources = r1 agent1.sinks = k1 agent1.channels = c1 # Describe/configure the source agent1.sources.r1.type = netcat agent1.sources.r1.bind = localhost agent1.sources.r1.port = 44444 agent1.sources.r1.interceptors = i1 agent1.sources.r1.interceptors.i1.type = host agent1.sources.r1.interceptors.i1.hostHeader = hostname # Use a channel which buffers events in memory agent1.channels.c1.type = memory agent1.channels.c1.capacity = 1 agent1.channels.c1.transactionCapacity = 1 # Bind the source and sink to the channel agent1.sources.r1.channels = c1 agent1.sinks.k1.channel = c1 # Describe the sink agent1.sinks.k1.type = logger
則,注意,啓動命令也要發生變化
[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_HostInterceptor/ --conf-file conf_HostInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
SLF4J: Found binding in [jar:file:/home/hadoop/app/hbase-0.98.19/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/app/hive-1.0.0/lib/hive-jdbc-1.0.0-standalone.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. 2017-07-27 12:41:49,451 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:62)] Configuration provider starting 2017-07-27 12:41:50,137 (conf-file-poller-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:134)] Reloading configuration file:conf_HostInterceptor/flume-conf.properties 2017-07-27 12:41:50,188 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1016)] Processing:k1 2017-07-27 12:41:50,189 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1016)] Processing:k1 2017-07-27 12:41:50,189 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:930)] Added sinks: k1 Agent: agent1 2017-07-27 12:41:50,280 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:140)] Post-validation flume configuration contains configuration for agents: [agent1] 2017-07-27 12:41:50,280 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:147)] Creating channels 2017-07-27 12:41:50,337 (conf-file-poller-0) [INFO - org.apache.flume.channel.DefaultChannelFactory.create(DefaultChannelFactory.java:42)] Creating instance of channel c1 type memory 2017-07-27 12:41:50,423 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:201)] Created channel c1 2017-07-27 12:41:50,425 (conf-file-poller-0) [INFO - org.apache.flume.source.DefaultSourceFactory.create(DefaultSourceFactory.java:41)] Creating instance of source r1, type netcat 2017-07-27 12:41:51,478 (conf-file-poller-0) [INFO - org.apache.flume.sink.DefaultSinkFactory.create(DefaultSinkFactory.java:42)] Creating instance of sink: k1, type: logger 2017-07-27 12:41:51,490 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:116)] Channel c1 connected to [r1, k1] 2017-07-27 12:41:52,050 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:137)] Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@13f948e counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} } 2017-07-27 12:41:52,052 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:144)] Starting Channel c1 2017-07-27 12:41:53,484 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:119)] Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. 2017-07-27 12:41:53,517 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: CHANNEL, name: c1 started 2017-07-27 12:41:53,522 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:171)] Starting Sink k1 2017-07-27 12:41:53,524 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:182)] Starting Source r1 2017-07-27 12:41:53,531 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:155)] Source starting 2017-07-27 12:41:54,384 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:169)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]
等待數據的採集
[hadoop@master ~]$ yum -y install telnet
Loaded plugins: fastestmirror, refresh-packagekit, security You need to be root to perform this command. [hadoop@master ~]$ su root Password: [root@master hadoop]# yum -y install telnet Loaded plugins: fastestmirror, refresh-packagekit, security Loading mirror speeds from cached hostfile * base: mirrors.cqu.edu.cn * extras: mirrors.sohu.com
成功地,而後,這邊隨便輸入什麼。好比hello
[root@master ~]# telnet localhost 44444
Trying ::1... telnet: connect to address ::1: Connection refused Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. hello OK
Event: { headers:{hostname=192.168.80.145} body: 68 65 6C 6C 6F 0D hello. }
這就是Host Interceptor的做用體現!
agent1.sources.r1.interceptors = i1
agent1.sources.r1.interceptors.i1.type = host agent1.sources.r1.interceptors.i1.hostHeader = hostname
若想要以下的效果,則
Event: { headers:{hostname=master} body: 7A 68 6F 75 6C 73 0D zhouls. }
則
agent1.sources = r1 agent1.sinks = k1 agent1.channels = c1 # Describe/configure the source agent1.sources.r1.type = netcat agent1.sources.r1.bind = localhost agent1.sources.r1.port = 44444 agent1.sources.r1.interceptors = i1 agent1.sources.r1.interceptors.i1.type = host agent1.sources.r1.interceptors.i1.useIP = false agent1.sources.r1.interceptors.i1.hostHeader = hostname # Use a channel which buffers events in memory agent1.channels.c1.type = memory agent1.channels.c1.capacity = 1 agent1.channels.c1.transactionCapacity = 1 # Bind the source and sink to the channel agent1.sources.r1.channels = c1 agent1.sinks.k1.channel = c1 # Describe the sink agent1.sinks.k1.type = logger
[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_HostInterceptor/ --conf-file conf_HostInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
[root@master ~]# telnet localhost 44444 Trying ::1... telnet: connect to address ::1: Connection refused Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. zhouls OK
Event: { headers:{hostname=master} body: 7A 68 6F 75 6C 73 0D zhouls. }
Regex Extractor Interceptor(正則抽取攔截器)
conf_RegexExtractorInterceptor的flume-conf.properties
[hadoop@master conf_RegexExtractorInterceptor]$ pwd /home/hadoop/app/flume-1.7.0/conf_RegexExtractorInterceptor [hadoop@master conf_RegexExtractorInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:03 flume-conf.properties -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:03 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:03 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3133 Jul 27 12:31 log4j.properties [hadoop@master conf_RegexExtractorInterceptor]$ vim flume-conf.properties
首先,咱們來講說這個攔截器的應用場景
假設,有以下的flume測試數據
video_info {"id":"14943445328940974601","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974602","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974603","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974604","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974605","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974606","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974607","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974608","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974609","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} {"id":"14943445328940974610","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"} userinfo {"uid":"861848974414839801","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839802","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839803","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839804","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839805","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839806","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839807","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839808","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839809","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} {"uid":"861848974414839810","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"} gift_record {"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","timestamp":1494344574,"type":"gift_record"} {"send_id":"829622867955417088","good_id":"72","video_id":"14943429572096925829","gold":"4","timestamp":1494344574,"type":"gift_record"} {"send_id":"827187230564286464","good_id":"193","video_id":"14943394752706070833","gold":"6","timestamp":1494344574,"type":"gift_record"} {"send_id":"829622867955417088","good_id":"80","video_id":"14943429572096925829","gold":"6","timestamp":1494344574,"type":"gift_record"} {"send_id":"799051982152663040","good_id":"72","video_id":"14943435528719800690","gold":"4","timestamp":1494344574,"type":"gift_record"} {"send_id":"848799149716930560","good_id":"72","video_id":"14943435528719800690","gold":"4","timestamp":1494344574,"type":"gift_record"} {"send_id":"775251729037262848","good_id":"777","video_id":"14943390379833490630","gold":"5","timestamp":1494344574,"type":"gift_record"} {"send_id":"835670464000425984","good_id":"238","video_id":"14943428496217015696","gold":"2","timestamp":1494344574,"type":"gift_record"} {"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","timestamp":1494344574,"type":"gift_record"} {"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","timestamp":1494344574,"type":"gift_record"}
以上是flume採集後的數據。假設都是在這個flume測試數據.txt裏,如今呢,我想按照type來存放到不一樣的目錄下。
即video_info的存放到video_info目錄下、userinfo的存放到userinfo目錄下、gift_record的存放到gift_record目錄下。
則,這樣的應用場景,即根據數據裏內容的type字段的值的不一樣,來分別存儲。則須要Regex Extractor Interceptor派上用場了。
怎麼作呢,其實很簡單,把type的值,放到
# 定義攔截器 agent1.sources.r1.interceptors = i1 # 設置攔截器類型 agent1.sources.r1.interceptors.i1.type = regex_extractor # 設置正則表達式,匹配指定的數據,這樣設置會在數據的header中增長log_type=」對應的值」 agent1.sources.r1.interceptors.i1.regex = "type":"(\\w+)" agent1.sources.r1.interceptors.i1.serializers = s1 agent1.sources.r1.interceptors.i1.serializers.s1.name = log_type
爲何是這麼來寫?
agent1.sources.r1.interceptors.i1.regex = "type":"(\\w+)"
是由於數據的內容決定的。
"type":"video_info" "type":"userinfo" "type":"gift_record"
#source的名字 agent1.sources = fileSource # channels的名字,建議按照type來命名 agent1.channels = memoryChannel # sink的名字,建議按照目標來命名 agent1.sinks = hdfsSink # 指定source使用的channel名字 agent1.sources.fileSource.channels = memoryChannel # 指定sink須要使用的channel的名字,注意這裏是channel agent1.sinks.hdfsSink.channel = memoryChannel agent1.sources.fileSource.type = exec agent1.sources.fileSource.command = tail -F /usr/local/log/server.log #------- fileChannel-1相關配置------------------------- # channel類型 agent1.channels.memoryChannel.type = memory agent1.channels.memoryChannel.capacity = 1000 agent1.channels.memoryChannel.transactionCapacity = 1000 agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20 agent1.channels.memoryChannel.byteCapacity = 800000 #---------攔截器相關配置------------------ # 定義攔截器 agent1.sources.fileSource.interceptors = i1 # 設置攔截器類型 agent1.sources.fileSource.interceptors.i1.type = regex_extractor # 設置正則表達式,匹配指定的數據,這樣設置會在數據的header中增長log_type="某個值" agent1.sources.fileSource.interceptors.i1.regex = "type":"(\\w+)" agent1.sources.fileSource.interceptors.i1.serializers = s1 agent1.sources.fileSource.interceptors.i1.serializers.s1.name = log_type #---------hdfsSink 相關配置------------------ agent1.sinks.hdfsSink.type = hdfs # 注意, 咱們輸出到下面一個子文件夾datax中 agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type} agent1.sinks.hdfsSink.hdfs.writeFormat = Text agent1.sinks.hdfsSink.hdfs.fileType = DataStream agent1.sinks.hdfsSink.hdfs.callTimeout = 3600000 agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true #當文件大小爲52428800字節時,將臨時文件滾動成一個目標文件 agent1.sinks.hdfsSink.hdfs.rollSize = 52428800 #events數據達到該數量的時候,將臨時文件滾動成目標文件 agent1.sinks.hdfsSink.hdfs.rollCount = 0 #每隔N s將臨時文件滾動成一個目標文件 agent1.sinks.hdfsSink.hdfs.rollInterval = 1200 #配置前綴和後綴 agent1.sinks.hdfsSink.hdfs.filePrefix=run agent1.sinks.hdfsSink.hdfs.fileSuffix=.data
監控文件是在
/usr/local/log/server.log
[root@master local]# pwd /usr/local [root@master local]# ll total 40 drwxr-xr-x. 2 root root 4096 Sep 23 2011 bin drwxr-xr-x. 2 root root 4096 Sep 23 2011 etc drwxr-xr-x. 2 root root 4096 Sep 23 2011 games drwxr-xr-x. 2 root root 4096 May 1 19:40 include drwxr-xr-x. 2 root root 4096 May 1 19:40 lib drwxr-xr-x. 2 root root 4096 Sep 23 2011 lib64 drwxr-xr-x. 2 root root 4096 Sep 23 2011 libexec drwxr-xr-x. 2 root root 4096 Sep 23 2011 sbin drwxr-xr-x. 6 root root 4096 May 1 19:40 share drwxr-xr-x. 2 root root 4096 Sep 23 2011 src [root@master local]# mkdir log [root@master local]# cd log [root@master log]# pwd /usr/local/log [root@master log]# ll total 0 [root@master log]#
而後,執行
[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_RegexExtractorInterceptor/ --conf-file conf_RegexExtractorInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
而後,我這邊,採用以下的一個shell腳原本模擬產生測試數據。
producerLog.sh
[root@master log]# pwd /usr/local/log [root@master log]# ll total 0 [root@master log]# vim producerLog.sh
#!/bin/bash log1='{"id":"14943445328940974610","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hot s":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","repl ay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}' log2='{"uid":"861848974414839810","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_fac e":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494 344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":" 0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"user_info"}' log3='{"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","ti mestamp":1494344574,"type":"gift_record"}' declare -i count count=0 while [ 'a' = 'a' ] do echo -e $log1 >> /usr/local/log/server.log echo -e $log2 >> /usr/local/log/server.log echo -e $log3 >> /usr/local/log/server.log count+=1 if [ ${count} -eq 500 ] then count=0 echo "sleep..." sleep 3 fi done
這個shell腳本不太難哈。即log1會生成500條、log2會生成500條、log3會生成500條。每隔3秒。
而後,再來建立server.log文件
[root@master log]# pwd /usr/local/log [root@master log]# ll total 4 -rw-r--r-- 1 root root 1157 Jul 27 14:39 producerLog.sh [root@master log]# vim producerLog.sh [root@master log]# touch server.log [root@master log]# ll total 4 -rw-r--r-- 1 root root 1157 Jul 27 14:42 producerLog.sh -rw-r--r-- 1 root root 0 Jul 27 14:43 server.log [root@master log]# cat server.log [root@master log]#
而後,來執行這個腳本,以模擬產生數據。
[root@master log]# pwd /usr/local/log [root@master log]# ll total 4 -rw-r--r-- 1 root root 1157 Jul 27 14:42 producerLog.sh -rw-r--r-- 1 root root 0 Jul 27 14:43 server.log [root@master log]# chmod 755 producerLog.sh [root@master log]# ll total 4 -rwxr-xr-x 1 root root 1157 Jul 27 14:42 producerLog.sh -rw-r--r-- 1 root root 0 Jul 27 14:43 server.log [root@master log]# ./producerLog.sh
2017-07-27 14:46:42,275 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file. 2017-07-27 14:46:42,279 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727//run.1501137914366.data.tmp 2017-07-27 14:46:43,117 (hdfs-hdfsSink-call-runner-9) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/run.1501137914366.data.tmp to hdfs://master:9000/data/types/20170727/run.1501137914366.data 2017-07-27 14:46:43,429 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727//run.1501137914367.data.tmp 2017-07-27 14:46:45,017 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file. 2017-07-27 14:46:45,017 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data.tmp 2017-07-27 14:46:45,091 (hdfs-hdfsSink-call-runner-0) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data.tmp to hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data 2017-07-27 14:46:45,236 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727/video_info/run.1501137883921.data.tmp 2017-07-27 14:46:45,412 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file. 2017-07-27 14:46:45,412 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727//run.1501137914367.data.tmp 2017-07-27 14:46:45,455 (hdfs-hdfsSink-call-runner-7) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/run.1501137914367.data.tmp to hdfs://master:9000/data/types/20170727/run.1501137914367.data 2017-07-27 14:46:45,585 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727//run.1501137914368.data.tmp 2017-07-27 14:46:45,942 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file. 2017-07-27 14:46:45,942 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data.tmp 2017-07-27 14:46:46,074 (hdfs-hdfsSink-call-runner-4) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data.tmp to hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data 2017-07-27 14:46:46,138 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727/gift_record/run.1501137916400.data.tmp
Search and Replace Interceptor
以上存放,是在
模擬產生的gift_record是存放在 /data/types/20170727/gift_record
可是呢。我如今需求是
模擬產生的gift_record是存放在 /data/types/20170727/giftRecord
則改成
agent1.sources.r1.interceptors = i1 i2 i3 i4 agent1.sources.r1.interceptors.i1.type = search_replace agent1.sources.r1.interceptors.i1.searchPattern = "type":"gift_record" agent1.sources.r1.interceptors.i1.replaceString = "type":"giftRecord" agent1.sources.r1.interceptors.i2.type = search_replace agent1.sources.r1.interceptors.i2.searchPattern = "type":"video_info" agent1.sources.r1.interceptors.i2.replaceString = "type":"videoInfo" agent1.sources.r1.interceptors.i3.type = search_replace agent1.sources.r1.interceptors.i3.searchPattern = "type":"user_info" agent1.sources.r1.interceptors.i3.replaceString = "type":"userInfo" agent1.sources.fileSource.interceptors.i4.type = regex_extractor agent1.sources.fileSource.interceptors.i4.regex = "type":"(\\w+)" agent1.sources.fileSource.interceptors.i4.serializers = s1 agent1.sources.fileSource.interceptors.i4.serializers.s1.name = log_type
[hadoop@master conf_SearchandReplaceInterceptor]$ pwd /home/hadoop/app/flume-1.7.0/conf_SearchandReplaceInterceptor [hadoop@master conf_SearchandReplaceInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:04 flume-conf.properties -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:04 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:04 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3135 Jul 27 12:32 log4j.properties [hadoop@master conf_SearchandReplaceInterceptor]$ vim flume-conf.properties
#source的名字 agent1.sources = fileSource # channels的名字,建議按照type來命名 agent1.channels = memoryChannel # sink的名字,建議按照目標來命名 agent1.sinks = hdfsSink # 指定source使用的channel名字 agent1.sources.fileSource.channels = memoryChannel # 指定sink須要使用的channel的名字,注意這裏是channel agent1.sinks.hdfsSink.channel = memoryChannel agent1.sources.fileSource.type = exec agent1.sources.fileSource.command = tail -F /usr/local/log/server.log #------- fileChannel-1相關配置------------------------- # channel類型 agent1.channels.memoryChannel.type = memory agent1.channels.memoryChannel.capacity = 1000 agent1.channels.memoryChannel.transactionCapacity = 1000 agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20 agent1.channels.memoryChannel.byteCapacity = 800000 #---------攔截器相關配置------------------
agent1.sources.r1.interceptors = i1 i2 i3 i4
agent1.sources.r1.interceptors.i1.type = search_replace
agent1.sources.r1.interceptors.i1.searchPattern = "type":"gift_record"
agent1.sources.r1.interceptors.i1.replaceString = "type":"giftRecord"
agent1.sources.r1.interceptors.i2.type = search_replace
agent1.sources.r1.interceptors.i2.searchPattern = "type":"video_info"
agent1.sources.r1.interceptors.i2.replaceString = "type":"videoInfo"
agent1.sources.r1.interceptors.i3.type = search_replace
agent1.sources.r1.interceptors.i3.searchPattern = "type":"user_info"
agent1.sources.r1.interceptors.i3.replaceString = "type":"userInfo"
agent1.sources.fileSource.interceptors.i4.type = regex_extractor agent1.sources.fileSource.interceptors.i4.regex = "type":"(\\w+)" agent1.sources.fileSource.interceptors.i4.serializers = s1 agent1.sources.fileSource.interceptors.i4.serializers.s1.name = log_type #---------hdfsSink 相關配置------------------ agent1.sinks.hdfsSink.type = hdfs # 注意, 咱們輸出到下面一個子文件夾datax中 agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type} agent1.sinks.hdfsSink.hdfs.writeFormat = Text agent1.sinks.hdfsSink.hdfs.fileType = DataStream agent1.sinks.hdfsSink.hdfs.callTimeout = 3600000 agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true #當文件大小爲52428800字節時,將臨時文件滾動成一個目標文件 agent1.sinks.hdfsSink.hdfs.rollSize = 52428800 #events數據達到該數量的時候,將臨時文件滾動成目標文件 agent1.sinks.hdfsSink.hdfs.rollCount = 0 #每隔N s將臨時文件滾動成一個目標文件 agent1.sinks.hdfsSink.hdfs.rollInterval = 1200 #配置前綴和後綴 agent1.sinks.hdfsSink.hdfs.filePrefix=run agent1.sinks.hdfsSink.hdfs.fileSuffix=.data
而後,執行
[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_SearchandReplaceInterceptor/ --conf-file conf_SearchandReplaceInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
我這裏,出現了這個錯誤
2017-07-29 10:17:51,006 (lifecycleSupervisor-1-2) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SOURCE, name: fileSource started 2017-07-29 10:17:52,792 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:57)] Serializer = TEXT, UseRawLocalFileSystem = false 2017-07-29 10:17:55,094 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170729//run.1501294672792.data.tmp 2017-07-29 10:17:55,842 (hdfs-hdfsSink-call-runner-0) [WARN - org.apache.hadoop.util.NativeCodeLoader.<clinit>(NativeCodeLoader.java:62)] Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2017-07-29 10:18:00,495 (pool-5-thread-1) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:352)] Failed while running command: tail -F /usr/local/log/server.log org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight at org.apache.flume.channel.MemoryChannel$MemoryTransaction.doCommit(MemoryChannel.java:127) at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:151) at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194) at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381) at org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:341) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 2017-07-29 10:18:00,544 (timedFlushExecService21-0) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:327)] Exception occured when processing event batch org.apache.flume.ChannelException: java.lang.InterruptedException at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:154) at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194) at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381) at org.apache.flume.source.ExecSource$ExecRunnable.access$100(ExecSource.java:254) at org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:323) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
而後,這邊模擬產生數據。
[root@master log]# pwd /usr/local/log [root@master log]# ll total 4 -rwxr-xr-x 1 root root 1157 Jul 29 10:01 producerLog.sh -rw-r--r-- 1 root root 0 Jul 29 10:06 server.log [root@master log]# ./producerLog.sh sleep... sleep... sleep...
Flume自定義攔截器(Interceptors)
1、自定義攔截器類型必須是:類全名$內部類名,其實就是內部類名稱
如:zhouls.bigdata.MySearchAndReplaceInterceptor$Builder
2、爲何這樣寫
至於爲何這樣寫:是由於Interceptor接口還有一個 公共的內部接口(Builder) ,因此自定義攔截器 要是實現 Builder接口,
也就是實現一個內部類(該內部類的主要做用是:獲取flume-conf.properties 自定義的 參數,並將參數傳遞給 自定義攔截器)
3、
本人知識有限,可能描述的不太清楚,可自行了解 java接口與內部類。
因爲有時候內置的攔截器不夠用,因此須要針對特殊的業務需求自定義攔截器
官方文檔中沒有發現自定義interceptor的步驟,可是能夠根據flume源碼參考內置的攔截器的代碼
flume-1.7/flume-ng-core/src/main/java/org/apache/flume/interceptor/HostInterceptor.java
你們,去https://github.com/找到,由於,個人flume是1.7.0的。因此以下
修改後的pom.xml爲
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>zhouls.bigdata</groupId> <artifactId>flumeDemo</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>flumeDemo</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> <scope>test</scope> </dependency> <!-- 此版本的curator操做的zk是3.4.6版本 --> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-framework</artifactId> <version>2.10.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flume/flume-ng-core --> <dependency> <groupId>org.apache.flume</groupId> <artifactId>flume-ng-core</artifactId> <version>1.7.0</version> </dependency> </dependencies> </project>
而後,我這裏,參考github上的給定參考代碼,來寫出屬於咱們本身業務需求的flume自定義攔截器代碼編程。
MySearchAndReplaceInterceptor.java.java
package zhouls.bigdata.flumeDemo; import com.google.common.base.Preconditions; import org.apache.commons.lang.StringUtils; import org.apache.flume.Context; import org.apache.flume.Event; import org.apache.flume.interceptor.Interceptor; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.HashMap; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * Created by zhouls. * * 使用說明: * ====================================================== * # 定義攔截器 * agent.sources.kafkaSource.interceptors = i0 * # 設置攔截器類型 * # gift_record:giftRecord的意思是會把日誌中的gift_record替換爲giftRecord * agent.sources.kafkaSource.interceptors.i0.type = zhouls.MySearchAndReplaceInterceptor * agent.sources.kafkaSource.interceptors.i0.searchReplace = "gift_record:giftRecord,video_info:videoInfo" * ====================================================== */ public class MySearchAndReplaceInterceptor implements Interceptor { private static final Logger logger = LoggerFactory .getLogger(MySearchAndReplaceInterceptor.class); /** * 須要替換的字符串信息 * 格式:"key:value,key:value" */ private final String search_replace; private String[] splits; private String[] key_value; private String key; private String value; private HashMap<String, String> hashMap = new HashMap<String, String>(); private Pattern compile = Pattern.compile("\"type\":\"(\\w+)\""); private Matcher matcher; private String group; private MySearchAndReplaceInterceptor(String search_replace) { this.search_replace = search_replace; } /** * 初始化放在,最開始執行一次 * 把配置的數據初始化到map中,方便後面調用 */ public void initialize() { try{ if(StringUtils.isNotBlank(search_replace)){ splits = search_replace.split(","); for (String key_value_pair:splits) { key_value = key_value_pair.split(":"); key = key_value[0]; value = key_value[1]; hashMap.put(key,value); } } }catch (Exception e){ logger.error("數據格式錯誤,初始化失敗。"+search_replace,e.getCause()); } } public void close() { } /** * 具體的處理邏輯 * @param event * @return */ public Event intercept(Event event) { try{ String origBody = new String(event.getBody()); matcher = compile.matcher(origBody); if(matcher.find()){ group = matcher.group(1); if(StringUtils.isNotBlank(group)){ String newBody = origBody.replaceAll("\"type\":\""+group+"\"", "\"type\":\""+hashMap.get(group)+"\""); event.setBody(newBody.getBytes()); } } }catch (Exception e){ logger.error("攔截器處理失敗!",e.getCause()); } return event; } public List<Event> intercept(List<Event> events) { for (Event event : events) { intercept(event); } return events; } public static class Builder implements Interceptor.Builder { private static final String SEARCH_REPLACE_KEY = "searchReplace"; private String searchReplace; public void configure(Context context) { searchReplace = context.getString(SEARCH_REPLACE_KEY); Preconditions.checkArgument(!StringUtils.isEmpty(searchReplace), "Must supply a valid search pattern " + SEARCH_REPLACE_KEY + " (may not be empty)"); } public Interceptor build() { Preconditions.checkNotNull(searchReplace, "Regular expression searchReplace required"); return new MySearchAndReplaceInterceptor(searchReplace); } } }
而後把MySearchAndReplaceInterceptor這個類導出成一個jar包。
同時,你們也能夠用maven來打jar包
把這個jar包上傳到flume1.7.0的lib目錄下
[hadoop@master lib]$ rz [hadoop@master lib]$ ls apache-log4j-extras-1.1.jar flume-file-channel-1.7.0.jar flume-taildir-source-1.7.0.jar kite-data-core-1.0.0.jar parquet-hive-bundle-1.4.1.jar async-1.4.0.jar flume-hdfs-sink-1.7.0.jar flume-thrift-source-1.7.0.jar kite-data-hbase-1.0.0.jar parquet-jackson-1.4.1.jar asynchbase-1.7.0.jar flume-hive-sink-1.7.0.jar flume-tools-1.7.0.jar kite-data-hive-1.0.0.jar protobuf-java-2.5.0.jar avro-1.7.4.jar flume-irc-sink-1.7.0.jar flume-twitter-source-1.7.0.jar kite-hadoop-compatibility-1.0.0.jar scala-library-2.10.5.jar avro-ipc-1.7.4.jar flume-jdbc-channel-1.7.0.jar gson-2.2.2.jar libthrift-0.9.0.jar serializer-2.7.2.jar commons-cli-1.2.jar flume-jms-source-1.7.0.jar guava-11.0.2.jar log4j-1.2.17.jar servlet-api-2.5-20110124.jar commons-codec-1.8.jar flume-kafka-channel-1.7.0.jar httpclient-4.2.1.jar lz4-1.2.0.jar slf4j-api-1.6.1.jar commons-collections-3.2.2.jar flume-kafka-source-1.7.0.jar httpcore-4.1.3.jar mapdb-0.9.9.jar slf4j-log4j12-1.6.1.jar commons-compress-1.4.1.jar flume-ng-auth-1.7.0.jar irclib-1.10.jar metrics-core-2.2.0.jar snappy-java-1.1.0.jar commons-dbcp-1.4.jar flume-ng-configuration-1.7.0.jar jackson-annotations-2.3.0.jar mina-core-2.0.4.jar twitter4j-core-3.0.3.jar commons-io-2.1.jar flume-ng-core-1.7.0.jar jackson-core-2.3.1.jar MySearchAndReplaceInterceptor.jar twitter4j-media-support-3.0.3.jar commons-jexl-2.1.1.jar flume-ng-elasticsearch-sink-1.7.0.jar jackson-core-asl-1.9.3.jar netty-3.9.4.Final.jar twitter4j-stream-3.0.3.jar commons-lang-2.5.jar flume-ng-embedded-agent-1.7.0.jar jackson-databind-2.3.1.jar opencsv-2.3.jar velocity-1.7.jar commons-logging-1.1.1.jar flume-ng-hbase-sink-1.7.0.jar jackson-mapper-asl-1.9.3.jar paranamer-2.3.jar xalan-2.7.2.jar commons-pool-1.5.4.jar flume-ng-kafka-sink-1.7.0.jar jetty-6.1.26.jar parquet-avro-1.4.1.jar xercesImpl-2.9.1.jar curator-client-2.6.0.jar flume-ng-log4jappender-1.7.0.jar jetty-util-6.1.26.jar parquet-column-1.4.1.jar xml-apis-1.3.04.jar curator-framework-2.6.0.jar flume-ng-morphline-solr-sink-1.7.0.jar joda-time-2.1.jar parquet-common-1.4.1.jar xz-1.0.jar curator-recipes-2.6.0.jar flume-ng-node-1.7.0.jar jopt-simple-3.2.jar parquet-encoding-1.4.1.jar zkclient-0.7.jar derby-10.11.1.1.jar flume-ng-sdk-1.7.0.jar jsr305-1.3.9.jar parquet-format-2.0.0.jar flume-avro-source-1.7.0.jar flume-scribe-source-1.7.0.jar kafka_2.10-0.9.0.1.jar parquet-generator-1.4.1.jar flume-dataset-sink-1.7.0.jar flume-spillable-memory-channel-1.7.0.jar kafka-clients-0.9.0.1.jar parquet-hadoop-1.4.1.jar [hadoop@master lib]$ pwd /home/hadoop/app/flume-1.7.0/lib [hadoop@master lib]$
drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 13:40 conf_HostInterceptor drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 14:31 conf_RegexExtractorInterceptor drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 15:26 conf_SearchandReplaceInterceptor -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs drwxrwxr-x 2 hadoop hadoop 4096 Jul 27 16:26 lib -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools [hadoop@master flume-1.7.0]$ cp -r conf conf_MySearchAndReplaceInterceptor [hadoop@master flume-1.7.0]$ ll total 164 drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 13:40 conf_HostInterceptor drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 16:27 conf_MySearchAndReplaceInterceptor drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 14:31 conf_RegexExtractorInterceptor drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 15:26 conf_SearchandReplaceInterceptor -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs drwxrwxr-x 2 hadoop hadoop 4096 Jul 27 16:26 lib -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools [hadoop@master flume-1.7.0]$
修改好log4j.properties ,爲了方便管理查看日誌
[hadoop@master conf_MySearchAndReplaceInterceptor]$ pwd /home/hadoop/app/flume-1.7.0/conf_MySearchAndReplaceInterceptor [hadoop@master conf_MySearchAndReplaceInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 16:27 flume-conf.properties.template -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 16:27 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 16:27 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3107 Jul 27 16:27 log4j.properties [hadoop@master conf_MySearchAndReplaceInterceptor]$ mv flume-conf.properties.template flume-conf.properties [hadoop@master conf_MySearchAndReplaceInterceptor]$ vim log4j.properties
#flume.root.logger=DEBUG,console flume.root.logger=INFO,LOGFILE flume.log.dir=./logs flume.log.file=flume_MySearchAndReplaceInterceptor.log
[hadoop@master conf_MySearchAndReplaceInterceptor]$ ll total 16 -rw-r--r-- 1 hadoop hadoop 1661 Jul 27 16:27 flume-conf.properties -rw-r--r-- 1 hadoop hadoop 1455 Jul 27 16:27 flume-env.ps1.template -rw-r--r-- 1 hadoop hadoop 1565 Jul 27 16:27 flume-env.sh.template -rw-r--r-- 1 hadoop hadoop 3137 Jul 27 16:29 log4j.properties [hadoop@master conf_MySearchAndReplaceInterceptor]$ vim flume-conf.properties
而後,修改flume的配置文件以下:
注意:不能爲上面。
除非你的程序須要引號(「」),不然不要加引號(「」),本程序不須要引號,所以是錯誤的
#source的名字 agent1.sources = fileSource # channels的名字,建議按照type來命名 agent1.channels = memoryChannel # sink的名字,建議按照目標來命名 agent1.sinks = hdfsSink # 指定source使用的channel名字 agent1.sources.fileSource.channels = memoryChannel # 指定sink須要使用的channel的名字,注意這裏是channel agent1.sinks.hdfsSink.channel = memoryChannel agent1.sources.fileSource.type = exec agent1.sources.fileSource.command = tail -F /usr/local/log/server.log #------- fileChannel-1相關配置------------------------- # channel類型 agent1.channels.memoryChannel.type = memory agent1.channels.memoryChannel.capacity = 1000 agent1.channels.memoryChannel.transactionCapacity = 1000 agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20 agent1.channels.memoryChannel.byteCapacity = 800000 #---------攔截器相關配置------------------ #定義攔截器 agent1.sources.r1.interceptors = i1 i2 # 設置攔截器類型 agent1.sources.r1.interceptors.i1.type = zhouls.bigdata.MySearchAndReplaceInterceptor agent1.sources.r1.interceptors.i1.searchReplace = gift_record:giftRecord,video_info:videoInfo,user_info:userInfo # 設置攔截器類型 agent1.sources.r1.interceptors.i2.type = regex_extractor # 設置正則表達式,匹配指定的數據,這樣設置會在數據的header中增長log_type="某個值" agent1.sources.r1.interceptors.i2.regex = "type":"(\\w+)" agent1.sources.r1.interceptors.i2.serializers = s1 agent1.sources.r1.interceptors.i2.serializers.s1.name = log_type #---------hdfsSink 相關配置------------------ agent1.sinks.hdfsSink.type = hdfs # 注意, 咱們輸出到下面一個子文件夾datax中 agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type} agent1.sinks.hdfsSink.hdfs.writeFormat = Text agent1.sinks.hdfsSink.hdfs.fileType = DataStream agent1.sinks.hdfsSink.hdfs.callTimeout = 3600000 agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true #當文件大小爲52428800字節時,將臨時文件滾動成一個目標文件 agent1.sinks.hdfsSink.hdfs.rollSize = 52428800 #events數據達到該數量的時候,將臨時文件滾動成目標文件 agent1.sinks.hdfsSink.hdfs.rollCount = 0 #每隔N s將臨時文件滾動成一個目標文件 agent1.sinks.hdfsSink.hdfs.rollInterval = 1200 #配置前綴和後綴 agent1.sinks.hdfsSink.hdfs.filePrefix=run agent1.sinks.hdfsSink.hdfs.fileSuffix=.data
主要在裏面添加攔截器的配置是以下
#---------攔截器相關配置------------------ #定義攔截器 agent1.sources.r1.interceptors = i1 i2 # 設置攔截器類型 agent1.sources.r1.interceptors.i1.type = zhouls.bigdata.MySearchAndReplaceInterceptor agent1.sources.r1.interceptors.i1.searchReplace = "gift_record:giftRecord,video_info:videoInfo,user_info:userInfo" # 設置攔截器類型 agent1.sources.r1.interceptors.i2.type = regex_extractor # 設置正則表達式,匹配指定的數據,這樣設置會在數據的header中增長log_type="某個值" agent1.sources.r1.interceptors.i2.regex = "type":"(\\w+)" agent1.sources.r1.interceptors.i2.serializers = s1 agent1.sources.r1.interceptors.i2.serializers.s1.name = log_type
意思就是,即把gift_record 換成giftRecord
video_info轉換成videoInfo
user_info轉換成userInfo
而後,啓動agent服務便可。
[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_MySearchAndReplaceInterceptor/ --conf-file conf_MySearchAndReplaceInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
我這裏,出現了這個錯誤
2017-07-29 10:17:51,006 (lifecycleSupervisor-1-2) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SOURCE, name: fileSource started 2017-07-29 10:17:52,792 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:57)] Serializer = TEXT, UseRawLocalFileSystem = false 2017-07-29 10:17:55,094 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170729//run.1501294672792.data.tmp 2017-07-29 10:17:55,842 (hdfs-hdfsSink-call-runner-0) [WARN - org.apache.hadoop.util.NativeCodeLoader.<clinit>(NativeCodeLoader.java:62)] Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2017-07-29 10:18:00,495 (pool-5-thread-1) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:352)] Failed while running command: tail -F /usr/local/log/server.log org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight at org.apache.flume.channel.MemoryChannel$MemoryTransaction.doCommit(MemoryChannel.java:127) at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:151) at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194) at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381) at org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:341) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 2017-07-29 10:18:00,544 (timedFlushExecService21-0) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:327)] Exception occured when processing event batch org.apache.flume.ChannelException: java.lang.InterruptedException at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:154) at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194) at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381) at org.apache.flume.source.ExecSource$ExecRunnable.access$100(ExecSource.java:254) at org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:323) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
見博客
中間,我這裏還出現下面這個錯誤
中間,我這裏還出現下面這個錯誤
[root@master log]# ll total 4 -rwxr-xr-x 1 root root 1157 Jul 27 14:42 producerLog.sh -rw-r--r-- 1 root root 0 Jul 27 15:30 server.log [root@master log]# ./producerLog.sh
查看
同時,你們能夠關注個人我的博客:
http://www.cnblogs.com/zlslch/ 和 http://www.cnblogs.com/lchzls/ http://www.cnblogs.com/sunnyDream/
詳情請見:http://www.cnblogs.com/zlslch/p/7473861.html
人生苦短,我願分享。本公衆號將秉持活到老學到老學習無休止的交流分享開源精神,匯聚於互聯網和我的學習工做的精華乾貨知識,一切來於互聯網,反饋回互聯網。
目前研究領域:大數據、機器學習、深度學習、人工智能、數據挖掘、數據分析。 語言涉及:Java、Scala、Python、Shell、Linux等 。同時還涉及日常所使用的手機、電腦和互聯網上的使用技巧、問題和實用軟件。 只要你一直關注和呆在羣裏,天天必須有收穫
對應本平臺的討論和答疑QQ羣:大數據和人工智能躺過的坑(總羣)(161156071)